Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/25284

Title: Space-time processing for wireless mobile communications
Authors: See, Chong Meng Samson
Issue Date: 1999
Publisher: © C.M.S See
Abstract: Intersymbol interference (ISI) and co-channel interference (CCI) are two major obstacles to high speed data transmission in wireless cellular communications systems. Unlike thermal noise, their effects cannot be removed by increasing the signal power and are time-varying due to the relative motion between the transmitters and receivers. Space-time processing offers a signal processing framework to optimally integrate the spatial and temporal properties of the signal for maximal signal reception and at the same time, mitigate the ISI and CCI impairments. In this thesis, we focus on the development of this emerging technology to combat the undesirable effects of ISI and CCL We first develop a convenient mathematical model to parameterize the space-time multipath channel based on signal path power, directions and times of arrival. Starting from the continuous time-domain, we derive compact expressions of the vector space-time channel model that lead to the notion of block space-time manifold, Under certain identifiability conditions, the noiseless vector-channel outputs will lie on a subspace constructed from a set. of basis belonging to the block space-time manifold. This is an important observation as many high resolution array processing algorithms Can be applied directly to estimate the multi path channel parameters. Next we focus on the development of semi-blind channel identification and equalization algorithms for fast time-varying multi path channels. Specifically. we develop space-time processing algorithms for wireless TDMA networks that use short burst data formats with extremely short training data. sequences. Due to the latter, the estimated channel parameters are extremely unreliable for equalization with conventional adaptive methods. We approach the channel acquisition, tracking and equalization problems jointly, and exploit the richness of the inherent structural relationship between the channel parameters and the data sequence by repeated use of available data through a forward- backward optimization procedure. This enables the fuller exploitation of the available data. Our simulation studies show that significant performance gains are achieved over conventional methods. In the final part of this thesis, we address the problem identifying and equalizing multi path communication channels in the presence of strong CCl. By considering CCI as stochasic processes, we find that temporal diversity can be gained by observing the channel outputs from a tapped delay line. Together with the assertion that the finite alphabet property of the information sequences can offer additional information about the channel parameters and the noise-plus-covariance matrix, we develop a spatial temporal algorithm, iterative reweighting alternating minimization, to estimate the channel parameters and information sequence in a weighted least squares framework. The proposed algorithm is robust as it does not require knowledge of the number of CCI nor their structural information. Simulation studies demonstrate its efficacy over many reported methods.
Description: A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/25284
Appears in Collections:PhD Theses (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
Thesis-1999-See.pdf1.92 MBAdobe PDFView/Open
Form-1999-See.pdf54.29 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.