Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/25384

Title: Charge separation and transport in La0.6Sr0.4Co0.2Fe0.8O3-δ and ion-doping ceria heterostructure material for new generation fuel cell
Authors: Zhu, Bin
Wang, Baoyuan
Wang, Y.
Raza, Rizwan
Tan, Wenyi
Kim, Jung-Sik
van Aken, Peter A.
Lund, P.
Keywords: Fuel cell device
Semiconductor ionic fuel cell
Charge separation, ionic transport
Heterostructure
Composite
Semiconductor-ion material
Issue Date: 2017
Publisher: © Elsevier
Citation: ZHU, B. ... et al, 2017. Charge separation and transport in La0.6Sr0.4Co0.2Fe0.8O3-δ and ion-doping ceria heterostructure material for new generation fuel cell. Nano Energy, 37, pp. 195-202.
Abstract: Functionalities in heterostructure oxide material interfaces are an emerging subject resulting in extraordinary material properties such as great enhancement in the ionic conductivity in a heterostructure between a semiconductor SrTiO3 and an ionic conductor YSZ (yttrium stabilized zirconia), which can be expected to have a profound effect in oxygen ion conductors and solid oxide fuel cells [1–4]. Hereby we report a semiconductor-ionic heterostructure La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and Sm-Ca co-doped ceria (SCDC) material possessing unique properties for new generation fuel cells using semiconductor-ionic heterostructure composite materials. The LSCF-SCDC system contains both ionic and electronic conductivities, above 0.1 S/cm, but used as the electrolyte for the fuel cell it has displayed promising performance in terms of OCV (above 1.0 V) and enhanced power density (ca. 1000 mW/cm2 at 550 °C). Such high electronic conduction in the electrolyte membrane does not cause any short-circuiting problem in the device, instead delivering enhanced power output. Thus, the study of the charge separation/transport and electron blocking mechanism is crucial and can play a vital role in understanding the resulting physical properties and physics of the materials and device. With atomic level resolution ARM 200CF microscope equipped with the electron energy-loss spectroscopy (EELS) analysis, we can characterize more accurately the buried interface between the LSCF and SCDC further reveal the properties and distribution of charge carriers in the heterostructures. This phenomenon constrains the carrier mobility and determines the charge separation and devices’ fundamental working mechanism; continued exploration of this frontier can fulfill a next generation fuel cell based on the new concept of semiconductor-ionic fuel cells (SIFCs).
Description: This paper is closed access until 3rd May 2018.
Sponsor: This work was supported by the National Natural Science Foundation of China (Grant 51402093), Natural Science Foundation of Hubei Province, major project grant No. 2015CFA120, the Swedish Research Council (Grant No. 621-2011-4983), the European Commission FP7 TriSOFC-project (Grant No. 303454) and the European Union Seventh Framework Program (FP7/2007-2013) under grant agreement no. 312483 (ESTEEM2).
Version: Accepted for publication
DOI: 10.1016/j.nanoen.2017.05.003
URI: https://dspace.lboro.ac.uk/2134/25384
Publisher Link: http://dx.doi.org/10.1016/j.nanoen.2017.05.003
ISSN: 2211-2855
Appears in Collections:Closed Access (Aeronautical and Automotive Engineering)

Files associated with this item:

File Description SizeFormat
charge seperation LSCF_JSKim.pdfAccepted version1.45 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.