Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/25575

Title: The pseudocapacitive nature of CoFe2O4 thin films
Authors: Sagu, Jagdeep S.
Wijayantha, K.G.U.
Tahir, Asif A.
Issue Date: 2017
Publisher: Elsevier © The authors
Citation: SAGU, J.S., WIJAYANTHA, K.G.U. and TAHIR, A.A., 2017. The pseudocapacitive nature of CoFe2O4 thin films. Electrochimica Acta, 246, pp.870-878.
Abstract: Nanostructured Cobalt ferrite (CoFe2O4) thin films are fabricated by aerosol-assisted chemical vapour deposition (AACVD) and studied for application in supercapacitors. XRD and Raman spectroscopic analysis confirms the formation of single phase CoFe2O4. SEM analysis shows that the thin film morphology consists of nanoparticles less than 100 nm in size that are sintered together to form larger dendrites raised from the substrate. The larger dendrites range from 0.5 – 1 μm in diameter and are uniformly distributed over the FTO substrate, providing a highly porous structure which is desired for supercapacitor electrodes. Three-electrode electrochemical measurements reveal that CoFe2O4 is pseudocapacitive and is highly conducting. Studies of CoFe2O4 thin films in two-electrode symmetric supercapacitor configuration show a capacitance of 540 μF cm-2 and a relaxation time constant of 174 ms. Around 80% of the capacitance is retained after 7000 charge-discharge cycles when a maximum charging voltage of 1 V was used, indicating that the pseudocapacitive processes in CoFe2O4 are highly reversible and that it exhibits excellent chemical stability in 1 M NaOH alkaline electrolyte solution. The results show that CoFe2O4 is a cheap and promising alternative pseudocapacitive material to replace the expensive pseudocapacitive materials.
Description: This is an open access article published by Elsevier and made available under the terms of the Creative Commons Attribution Licence (CC BY 4.0), https://creativecommons.org/licenses/by/4.0/
Sponsor: JS and KGUW acknowledge the support from UK EPSRC (EP/L017709/1). AAT contributed to the initial work of this investigation in 2011 when he was a member of the ERL team and working under the project funded by EPSRC EP/F057342/1.
Version: Published
URI: https://dspace.lboro.ac.uk/2134/25575
Publisher Link: https://doi.org/10.1016/j.electacta.2017.06.110
ISSN: 0013-4686
Appears in Collections:Published Articles (Chemistry)

Files associated with this item:

File Description SizeFormat
1-s2.0-S0013468617313488-main.pdfPublished version4.13 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.