Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/25705

Title: The uncertainty in stiffness and damping of an automotive vehicle's trim-structure mounts and its effect on the variability of the vibration transfer function
Authors: Abolfathi, Ali
O'Boy, D.J.
Walsh, Stephen J.
Dowsett, Amy
Fisher, Stephen A.
Keywords: Uncertainty
Vibration transfer function
Impedance mobility approach
Statistical analysis
Monte carlo method
Mid frequency structural analysis
Issue Date: 2017
Publisher: SAGE / IMechE
Citation: ABOLFATHI, A. ... et al, 2017. The uncertainty in stiffness and damping of an automotive vehicle's trim-structure mounts and its effect on the variability of the vibration transfer function. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232 (15), pp.2587-2598.
Abstract: A large number of plastic clips are used in an automotive vehicle to connect the trim to the structure. These are small clips with very small masses compared to the structural elements that they connect together; however, the uncertainty in their properties can affect the dynamic response. The uncertainty arises out of their material and manufacturing tolerances and more importantly the boundary conditions. A test rig has been developed that can model the mounting condition of the clips. This allows measurement of the range of their effective stiffness and damping. Initially, the boundary condition at the structure side is replicated. The variability is found to be 7% for stiffness and 8% for damping. In order to simulate the connection of the trim side, a mount is built using a 3D printer. The variability due to the boundary condition on both sides was as large as 40% for stiffness and 36% for damping. A Monte Carlo simulation is used in order to assess the effect of the uncertainty of the clips’ properties on the vibration transfer functions of a door assembly. A simplified connection model is used in this study where only the axial degree of freedom is considered in connecting the trim to the door structure. The uncertainty in the clip stiffness and damping results in a variability in the vibration transfer function which is frequency dependent and can be as high as 10% at the resonant peaks with higher values at some other frequencies. It is shown that the effect of the uncertainty in the clips effective damping is negligible and the variability in the dynamic response is mainly due to the uncertainty in the clip’s stiffness. Furthermore, it is shown that the variability would reduce either by increasing or decreasing the effective stiffness of the clips.
Description: This is an Open Access article published by Sage and distributed under the terms of the Creative Commons Attribution Licence, https://creativecommons.org/licenses/by/4.0/
Sponsor: This work was supported by Jaguar Land Rover and the UK-EPSRC grant EP/K014102/1 as part of the jointly funded Programme for Simulation Innovation.
Version: Published
DOI: 10.1177/0954406217721724
URI: https://dspace.lboro.ac.uk/2134/25705
Publisher Link: https://doi.org/10.1177/0954406217721724
Related Resource: https://doi.org/10.17028/rd.lboro.5097592
ISSN: 0954-4062
Appears in Collections:Published Articles (Aeronautical and Automotive Engineering)

Files associated with this item:

File Description SizeFormat
0954406217721724.pdfPublished version1.95 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.