Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/25721

Title: Controlled propulsion and separation of helical particles at the nanoscale
Authors: Alcanzare, Maria M.
Thakore, Vaibhav
Ollila, Santtu T.
Karttunen, Mikko
Ala-Nissila, Tapio
Issue Date: 2017
Publisher: © Royal Society of Chemistry
Citation: ALCANZARE, M.M. ... et al, 2017. Controlled propulsion and separation of helical particles at the nanoscale. Soft Matter, 13 (11), pp. 2148-2154.
Abstract: Controlling the motion of nano and microscale objects in a fluid environment is a key factor in designing optimized tiny machines that perform mechanical tasks such as transport of drugs or genetic material in cells, fluid mixing to accelerate chemical reactions, and cargo transport in microfluidic chips. Directed motion is made possible by the coupled translational and rotational motion of asymmetric particles. A current challenge in achieving directed and controlled motion at the nanoscale lies in overcoming random Brownian motion due to thermal fluctuations in the fluid. We use a hybrid lattice-Boltzmann molecular dynamics method with full hydrodynamic interactions and thermal fluctuations to demonstrate that controlled propulsion of individual nanohelices in an aqueous environment is possible. We optimize the propulsion velocity and the efficiency of externally driven nanohelices. We quantify the importance of the thermal effects on the directed motion by calculating the Péclet number for various shapes, number of turns and pitch lengths of the helices. Consistent with the experimental microscale separation of chiral objects, our results indicate that in the presence of thermal fluctuations at Péclet numbers >10, chiral particles follow the direction of propagation according to its handedness and the direction of the applied torque making separation of chiral particles possible at the nanoscale. Our results provide criteria for the design and control of helical machines at the nanoscale.
Description: This paper is closed access until 17th February 2018.
Sponsor: This work was supported in part by the Academy of Finland through its Centres of Excellence Programme (2012–2017) under Project No. 251748 and Aalto Energy Efficiency Research Programme.
Version: Published
DOI: 10.1039/c6sm02437h
URI: https://dspace.lboro.ac.uk/2134/25721
Publisher Link: http://dx.doi.org/10.1039/c6sm02437h
ISSN: 1744-683X
Appears in Collections:Closed Access (Maths)

Files associated with this item:

File Description SizeFormat
Alcanzare_Propulsio-of-Chiral-Particles_Soft.Matter.13.(2017).2148.pdfPublished version2.85 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.