Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/25741

Title: Effect of temperature on magnetic solitons induced by spin-transfer torque
Authors: Lendinez, Sergi
Hang, Jinting
Velez, Saul
Hernandez, Joan M.
Backes, Dirk
Kent, Andrew D.
Macia, Ferran
Issue Date: 2017
Publisher: © American Physical Society
Citation: LENDINEZ, S. ... et al, 2017. Effect of temperature on magnetic solitons induced by spin-transfer torque. Physical Review Applied, 7 (5), 054027.
Abstract: Spin-transfer torques in a nanocontact to an extended magnetic film can create spin waves that condense to form dissipative droplet solitons. Here we report an experimental study of the temperature dependence of the current and applied field thresholds for droplet soliton formation, as well as the nanocontact's electrical characteristics associated with droplet dynamics. Nucleation requires lower current densities at lower temperatures, in contrast to typical spin-transfer-torque-induced switching between static magnetic states. Magnetoresistance and electrical noise measurements (10 MHz-1 GHz) show that droplet solitons become more stable at lower temperature. These results are of fundamental interest in understanding the influence of thermal noise on droplet solitons and have implications for the design of devices using the spin-transfer-torque effects to create and control collective spin excitations.
Description: This paper was accepted for publication in the journal Physical Review Applied and is available at http://dx.doi.org/10.1103/PhysRevApplied.7.054027.
Version: Published
DOI: 10.1103/PhysRevApplied.7.054027
URI: https://dspace.lboro.ac.uk/2134/25741
Publisher Link: http://dx.doi.org/10.1103/PhysRevApplied.7.054027
Appears in Collections:Published Articles (Physics)

Files associated with this item:

File Description SizeFormat
Art_20170531_PRApplied_Lendinez_Macia_sto.pdfPublished version1.05 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.