Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/25940

Title: A curve fitting methodology to determine impact location, timing, and instantaneous post-impact ball velocity in cricket batting
Authors: Peploe, Chris
McErlain-Naylor, Stuart
Harland, Andy R.
Yeadon, Maurice R.
King, Mark A.
Keywords: Cricket
Impact location
Curve fitting
Timing
Velocity
Kinematic data
Issue Date: 2017
Publisher: © The authors. Published by SAGE Journals
Citation: PEPLOE, C. ...et al., 2017. A curve fitting methodology to determine impact location, timing, and instantaneous post-impact ball velocity in cricket batting. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, doi:10.1177/1754337117723275.
Abstract: This study aimed to develop a methodology for accurate determination of the impact location of a cricket ball on the bat face, as well as the identification of bat-ball contact timing and post-impact instantaneous ball velocity in a whole body kinematic data collection environment. Three-dimensional kinematic data of bat and ball were recorded during fourteen batting strokes; eight hitting a static ball and six against a bowling machine. Curves were fitted separately to the pre- and post-impact phases of the ball position data against time in three axes according to logarithmic equations determined from mechanical principles. Separate Fourier series models were similarly fitted to the four corners of the bat face against time during the downswing prior to ball impact. Time of impact for the dynamic ball trials was determined based upon the intersection of pre- and post-impact curves, with impact location calculated from ball and bat face curves at this time. R2 values for the goodness of fit of the ball and bat curves averaged 0.99 ± 0.04 and 1.00 ± 0.00 with root mean square errors of 7.5 ± 2.6 and 0.8 ± 0.2 mm, respectively. Calculated impact locations were assessed against measured impact locations derived from the impression imparted to a fine powder coating on the bat face, finding absolute differences of 6.4 ± 4.2 and 7.1 ± 4.4 mm in the transverse and longitudinal axes of the bat, respectively. Thus, an automated curve fitting methodology enables the accurate determination of cricket bat-ball impact characteristics for use in experimental investigations.
Description: This paper was accepted for publication in the journal Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology and the definitive published version is available at https://doi.org/10.1177/1754337117723275.
Sponsor: This project was part-funded by the England and Wales Cricket Board (ECB).
Version: Accepted for publication
DOI: 10.1177/1754337117723275
URI: https://dspace.lboro.ac.uk/2134/25940
Publisher Link: https://doi.org/10.1177/1754337117723275
ISSN: 1754-3371
Appears in Collections:Published Articles (Mechanical, Electrical and Manufacturing Engineering)
Published Articles (Sport, Exercise and Health Sciences)

Files associated with this item:

File Description SizeFormat
King_Impact Paper 1 - COMPLETE.pdfAccepted version670.56 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.