Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/26038

Title: Multi-impurity adsorption model for modeling crystal purity and shape evolution during crystallization processes in impure media
Authors: Borsos, Akos
Majumder, Aniruddha
Nagy, Zoltan K.
Issue Date: 2016
Publisher: © American Chemical Society (ACS)
Citation: BORSOS, A., MAJUMDER, A. and NAGY, Z.K., 2016. Multi-impurity adsorption model for modeling crystal purity and shape evolution during crystallization processes in impure media. Crystal Growth and Design, 16(2), pp. 555-568.
Abstract: © 2015 American Chemical Society. The impurity effect on the crystal properties, such as particle size and shape distribution, is significant, having significant impact on the downstream processes as well as on the product effectiveness. Currently very few studies exist that provide a quantitative model to describe crystal purity resulting from crystallization processes in impure media, and none to take into account the simultaneous effect of multiple impurities. Hence, the understanding of the effect of multiple impurities on crystallization process is important in order to obtain the desired product properties. Batch crystallization of potassium dihydrogen phosphate from aqueous solution in the presence of impurities was investigated experimentally by using an online particle vision and measurement tool with real-time image analysis. A mathematical model to describe the crystal purity and aspect ratio is proposed based on a morphological population balance equation including primary nucleation, growth of characteristic faces and multisite, competitive adsorption of impurities. The model parameters were identified and validated using crystallization experiments in mixtures of two impurities with variable composition. The developed and validated model can be an efficient tool for the investigation of crystallization processes in impure media with multiple impurities. The model can also serve as an effective tool for process and product design or optimization.
Description: This document is the Accepted Manuscript Version of a Published Work that appeared in final form in Crystal Growth and Design, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acs.cgd.5b00320
Sponsor: Financial support provided by the European Research Council grant no. [280106-CrySys] is gratefully acknowledged.
Version: Accepted for publication
DOI: 10.1021/acs.cgd.5b00320
URI: https://dspace.lboro.ac.uk/2134/26038
Publisher Link: http://dx.doi.org/10.1021/acs.cgd.5b00320
ISSN: 1528-7483
Appears in Collections:Published Articles (Chemical Engineering)

Files associated with this item:

File Description SizeFormat
Nagy_AB_AM_ZKN_maI_revisII_v2_NoMarked.pdfAccepted version3.24 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.