Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/26381

Title: Plasmonically enhanced reflectance of heat radiation from low-bandgap semiconductor microinclusions
Authors: Tang, Janika
Thakore, Vaibhav
Ala-Nissila, Tapio
Issue Date: 2017
Publisher: © the Authors. Published by the Nature Publishing Group
Citation: TANG, J., THAKORE, V. and ALA-NISSILA, T., 2017. Plasmonically enhanced reflectance of heat radiation from low-bandgap semiconductor microinclusions. Scientific Reports, 7: 5696.
Abstract: © 2017 The Author(s). Increased reflectance from the inclusion of highly scattering particles at low volume fractions in an insulating dielectric offers a promising way to reduce radiative thermal losses at high temperatures. Here, we investigate plasmonic resonance driven enhanced scattering from microinclusions of low-bandgap semiconductors (InP, Si, Ge, PbS, InAs and Te) in an insulating composite to tailor its infrared reflectance for minimizing thermal losses from radiative transfer. To this end, we compute the spectral properties of the microcomposites using Monte Carlo modeling and compare them with results from Fresnel equations. The role of particle size-dependent Mie scattering and absorption efficiencies, and, scattering anisotropy are studied to identify the optimal microinclusion size and material parameters for maximizing the reflectance of the thermal radiation. For composites with Si and Ge microinclusions we obtain reflectance efficiencies of 57-65% for the incident blackbody radiation from sources at temperatures in the range 400-1600 °C. Furthermore, we observe a broadbanding of the reflectance spectra from the plasmonic resonances due to charge carriers generated from defect states within the semiconductor bandgap. Our results thus open up the possibility of developing efficient high-Temperature thermal insulators through use of the low-bandgap semiconductor microinclusions in insulating dielectrics.
Description: This is an Open Access Article. It is published by Nature Publishing Group under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/
Sponsor: The authors gratefully acknowledge funding and support from the Academy of Finland, Center of Excellence Programme (2015–2017), Project No. 284621; the Aalto Energy Efficiency Research Program EXPECTS; and, the Aalto Science-IT project.
Version: Published
DOI: 10.1038/s41598-017-05630-4
URI: https://dspace.lboro.ac.uk/2134/26381
Publisher Link: https://doi.org/10.1038/s41598-017-05630-4
Appears in Collections:Published Articles (Maths)

Files associated with this item:

File Description SizeFormat
Thakore_Plasmonics-Heat-Radiation_Sci.Reps.7.(2017).5696.pdfPublished version7.7 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.