Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/26382

Title: Efficient protocol for qubit initialization with a tunable environment
Authors: Tuorila, Jani
Partanen, Matti
Ala-Nissila, Tapio
Mottonen, Mikko
Issue Date: 2017
Publisher: © the Authors. Published by the Nature Publishing Group
Citation: TOURILA, J. ...et al., 2017. Efficient protocol for qubit initialization with a tunable environment. npj Quantum Information, 3: 27.
Abstract: We propose an efficient qubit initialization protocol based on a dissipative environment that can be dynamically adjusted. Here, the qubit is coupled to a thermal bath through a tunable harmonic oscillator. On-demand initialization is achieved by sweeping the oscillator rapidly into resonance with the qubit. This resonant coupling with the engineered environment induces fast relaxation to the ground state of the system, and a consecutive rapid sweep back to off resonance guarantees weak excess dissipation during quantum computations. We solve the corresponding quantum dynamics using a Markovian master equation for the reduced density operator of the qubit-bath system. This allows us to optimize the parameters and the initialization protocol for the qubit. Our analytical calculations show that the ground-state occupation of our system is well protected during the fast sweeps of the environmental coupling and, consequently, we obtain an estimate for the duration of our protocol by solving the transition rates between the low-energy eigenstates with the Jacobian diagonalization method. Our results suggest that the current experimental state of the art for the initialization speed of superconducting qubits at a given fidelity can be considerably improved.
Description: This is an Open Access Article. It is published by Nature Publishing Group under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/
Sponsor: This work was supported by the Academy of Finland through its Centers of Excellence Programme under grant numbers 251748 and 284621, and through grant number 305306. We also acknowledge funding from the European Research Council under Consolidator Grant number 681311 (QUESS) and from the Vilho, Yrjo, and Kalle Vaisala Foundation.
Version: Published
DOI: 10.1038/s41534-017-0027-1
URI: https://dspace.lboro.ac.uk/2134/26382
Publisher Link: https://doi.org/10.1038/s41534-017-0027-1
ISSN: 2056-6387
Appears in Collections:Published Articles (Maths)

Files associated with this item:

File Description SizeFormat
Tuorila_Qubit-Initialization_njp.Quant.Information.3.(2017).27.pdfPublished version2.07 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.