Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/26437

Title: The prediction of measurement variability in an automotive application by the use of a coherence formulation
Authors: Dowsett, Amy
O'Boy, D.J.
Walsh, Stephen J.
Abolfathi, Ali
Fisher, Stephen A.
Keywords: Coherence
Measurement error
Issue Date: 2018
Publisher: © IMechE
Citation: DOWSETT, A. ...et al., 2018. The prediction of measurement variability in an automotive application by the use of a coherence formulation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 232(12), pp. 1694-1700.
Abstract: Variability between nominally identical vehicles is an ever present problem in automotive vehicle design. In this paper it is shown that it is possible to quantify and, therefore, separate the measurement variability arising from a number of tests on an individual vehicle from the vehicle to vehicle variability arising from the manufacturing process from a series of controlled experiments. In this paper the coherence data is used to identify the measurement variability and, thus, to separate these two variability sources. In order to illustrate the methodology a range of nominally identical automotive vehicles have been tested for NVH (noise, vibration and harshness) variability by exciting the engine mount with an impact hammer and measuring the excitation force and corresponding velocity responses at different points on the vehicle. Normalised standard deviations were calculated for the transfer mobility data, giving variability values of 25.3 %, 33.5 % and 37.3 % for the responses taken at the suspension Strut, Upper A Pillar and B Pillar respectively. The measurement variability was determined by taking repeat measurements on a single vehicle, and was found to be 2.9 %. The measurement variability predicted by the coherence data on the multi-vehicle tests was compared with the directly taken repeat measurements taken on a single vehicle and was shown to agree well with one another over the frequency range of interest.
Description: This is an Open Access Article. It is published by SAGE under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/
Sponsor: This work was supported by Jaguar Land Rover and the UK-EPSRC grant EP/K014102/1 as part of the jointly funded Programme for Simulation Innovation.
Version: Published
URI: https://dspace.lboro.ac.uk/2134/26437
Publisher Link: https://doi.org/10.1177/0954407017734768
ISSN: 0954-4070
Appears in Collections:Published Articles (Aeronautical and Automotive Engineering)

Files associated with this item:

File Description SizeFormat
Prediction.pdfPublished version1.25 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.