Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/26571

Title: Acoustic black holes for flexural waves: A smart approach to vibration damping
Authors: Krylov, Victor V.
Keywords: Acoustic black holes
Flexural waves
Vibration damping
Issue Date: 2017
Publisher: © The Authors. Published by Elsevier
Citation: KRYLOV, V.V., 2017. Acoustic black holes for flexural waves: A smart approach to vibration damping. Procedia Engineering, 199, pp. 56-61.
Abstract: The present paper provides a brief review of the theoretical and experimental investigations of 'acoustic black holes' for flexural waves in plate-like structures. Such acoustic black holes are relatively new physical objects that can absorb almost 100% of the incident wave energy. This makes them attractive for vibration damping in plate-like structures. The main principle of the acoustic black holes is based on a linear or higher order decrease in velocity of the incident flexural wave with propagation distance to almost zero. The decrease in velocity should be accompanied by efficient energy absorption in the area of very low velocity via insertion of small pieces of absorbing materials. This principle can be applied to achieve efficient damping of flexural waves and vibrations in plate-like structures using both one-dimensional acoustic black holes (power-law-profiled wedges) and two-dimensional acoustic black holes (power-law-profiled cylindrical indentations). The key advantage of using acoustic black holes for damping structural vibrations is that it requires very small amounts of added damping materials, in comparison with traditional methods, which is especially important for vibration damping in light-weight structures.
Description: Presented at the X International Conference on Structural Dynamics, EURODYN 2017. This is an Open Access Article. It is published by Elsevier under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Unported Licence (CC BY-NC-ND). Full details of this licence are available at: http://creativecommons.org/licenses/by-nc-nd/4.0/
Version: Published
DOI: 10.1016/j.proeng.2017.09.150
URI: https://dspace.lboro.ac.uk/2134/26571
Publisher Link: https://doi.org/10.1016/j.proeng.2017.09.150
ISSN: 1877-7058
Appears in Collections:Published Articles (Aeronautical and Automotive Engineering)

Files associated with this item:

File Description SizeFormat
Krylov Procedia Engineering 2017.pdfPublished version437.88 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.