Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/26783

Title: Identification of plasma protease derived metabolites of glucagon and their formation under typical laboratory sample handling conditions
Authors: Howard, James W.
Kay, Richard G.
Tan, Tricia
Minnion, James
Creaser, Colin S.
Keywords: Glucagon
Peptide metabolism
Plasma protease
Sample handling
Aprotinin stabilisation
Issue Date: 2015
Publisher: © Wiley
Citation: HOWARD, J.W. ...et al., 2015. Identification of plasma protease derived metabolites of glucagon and their formation under typical laboratory sample handling conditions. Rapid Communications in Mass Spectrometry, 29(2), pp. 171-181.
Abstract: Copyright © 2014 John Wiley & Sons, Ltd. RATIONALE Glucagon modulates glucose production, and it is also a biomarker for several pathologies. It is known to be unstable in human plasma, and consequently stabilisers are often added to samples, although these are not particularly effective. Despite this, there have not been any studies to identify in vitro plasma protease derived metabolites; such a study is described here. Knowledge of metabolism should allow the development of more effective sample stabilisation strategies. METHODS Several novel metabolites resulting from the incubation of glucagon in human plasma were identified using high-resolution mass spectrometry with positive electrospray ionisation. Tandem mass spectrometric (MS/MS) scans were acquired for additional confirmation using a QTRAP. Separation was performed using reversed-phase ultra-high-performance liquid chromatography. The formation of these metabolites was investigated during a time-course experiment and under specific stress conditions representative of typical laboratory handling conditions. Clinical samples were also screened for metabolites. RESULTS Glucagon < inf > 3-29 < /inf > and [pGlu] < sup > 3 < /sup > glucagon < inf > 3-29 < /inf > were the major metabolites detected, both of which were also present in clinical samples. We also identified two oxidised forms of [pGlu] < sup > 3 < /sup > glucagon < inf > 3-29 < /inf > as well as glucagon < inf > 19-29 < /inf > , or 'miniglucagon', along with the novel metabolites glucagon < inf > 20-29 < /inf > and glucagon < inf > 21-29 < /inf > . The relative levels of these metabolites varied throughout the time-course experiment, and under the application of the different sample handling conditions. Aprotinin stabilisation of samples had negligible effect on metabolite formation. CONCLUSIONS Novel plasma protease metabolites of glucagon have been confirmed, and their formation characterised over a time-course experiment and under typical laboratory handling conditions. These metabolites could be monitored to assess the effectiveness of new sample stabilisation strategies, and further investigations into their formation could suggest specific enzyme inhibitors to use to increase sample stability. In addition the potential of the metabolites to affect immunochemistry-based assays as a result of cross-reactivity could be investigated.
Description: This is the peer reviewed version of the following article: HOWARD, J.W. ...et al., 2015. Identification of plasma protease derived metabolites of glucagon and their formation under typical laboratory sample handling conditions. Rapid Communications in Mass Spectrometry, 29(2), pp. 171-181., which has been published in final form at http://dx.doi.org/10.1002/rcm.7090. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving
Version: Accepted for publication
DOI: 10.1002/rcm.7090
URI: https://dspace.lboro.ac.uk/2134/26783
Publisher Link: http://dx.doi.org/10.1002/rcm.7090
ISSN: 0951-4198
Appears in Collections:Published Articles (Chemistry)

Files associated with this item:

File Description SizeFormat
Creaser_Plasma+protease+derived+metabolites+of+glucagon_accepted+manuscript.pdfAccepted version793.54 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.