Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/27541

Title: Synthesis of fluorinated drug scaffolds using SNAr substitution reactions
Authors: Li, Yuqi
Keywords: Organofluorine
Drug scaffold
Anti-trypanosomal agent
Medicinal chemistry
Issue Date: 2017
Publisher: © Yuqi Li
Abstract: Fluorinated arenes are considered valuable in organic chemistry. They display different types of reactivity and physicochemical properties compared to their hydrogen analogues. In this project, our medicinal chemistry programme focused on developing rapidly accessible and modifiable heterocyclic scaffolds. Different classes of fluorinated heteroatom-containing organic compounds including benzothiophenes, (aza)phenoxazines and benzaldehyde phenylhydrazones were synthesised from highly fluorinated aromatic compounds with a diverse range of functional groups appropriate for medicinal chemistry development. Mechanistic studies for heterocyclic scaffold synthesis were discussed in the project. The mechanisms of the ring-forming reactions were elaborated in detail in each chapter. A range of substituents were introduced flexibly into the aromatic heterocycles, which were designed to meet the requirements for biological screening programmes. New compounds were characterized by 1H, 19F and 13C NMR spectroscopy, mass spectrometry and elemental analysis. The X-ray crystal structures of a fluorinated benzothiophene and two benzopyridooxazine derivatives were obtained confirming the structure and substitution pattern. From the heterocyclic scaffolds prepared, 6-benzimidazol-1-yl-benzothiophene derivatives (91), 3-imidazol-1-yl-pyridobenzoxazine derivatives (130) and 4-1-methylpiperazinyl-benzaldehyde phenylhydrazone derivatives (195) acted as hit compounds and demonstrated significant trypanocidal activities. SAR studies were employed in structural modifications on these samples to search for the best activities with highest selectivity.
Description: A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/27541
Appears in Collections:PhD Theses (Chemistry)

Files associated with this item:

File Description SizeFormat
Thesis-2017-Li.pdf5.3 MBAdobe PDFView/Open
Form-2017-Li.pdf2.1 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.