Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/28228

Title: Decoding gas-solid interaction effects on adsorption isotherm shape: I. Non-polar adsorptives
Authors: Madani, S. Hadi
Kwong, Philip
Rodriguez-Reinoso, Francisco
Biggs, Mark J.
Pendleton, Phillip
Keywords: Adsorption
Non-specific interaction
Issue Date: 2018
Publisher: © Elsevier
Citation: MADANI, S.H. ...et al., 2018. Decoding gas-solid interaction effects on adsorption isotherm shape: I. Non-polar adsorptives. Microporous and Mesoporous Materials, 264, pp. 76–83.
Abstract: A suite of non-polar adsorptives of different kinetic diameters and shape were used to determine adsorption and pore filling mechanism of a well-characterised poly(furfuryl alcohol)-based activated carbon. Triplicate measured Type I adsorption isotherms for each adsorptive were averaged to provide standard deviation in relative pressures and associated amounts adsorbed. Plateau amounts adsorbed for N2, Ar, CH4, and C6H6, provided Gurvitsch volumes averaged to 0.368 ± 0.015 cm3(liq)/g. The calculated Gurvitsch volumes were compared with those derived via the Dubinin-Radushkevich (DR) equation. Additional adsorptives were CO2, iso-butane and SF6. The results of these 7 adsorptives were used to qualitatively analyse and decode a micropore filling adsorption mechanism. The DR equation was also used for further analysis of the pore filling mechanism. Based on the adsorbate-adsorbate and adsorbate-adsorbent interactions, adsorbates were classified into three groups: (a) Non-polar with non-specific interactions (no dipole, no quadrupole, not readily polarizable: Ar, N2, CH4 and iso-butane), adsorbing as a continuous uptake over the observed relative pressure range; (b) Non-polar adsorptives with potential for specific interactions (no dipole, quadrupole moment: CO2 and C6H6), adsorbing as a condensation process over a relatively narrow relative pressure range in a medium pressure range; (c) Halogenated adsorptives (no dipole, no quadrupole, polarizable: SF6), adsorbing with an S-shaped uptake extending over a relatively broad relative pressure range.
Description: This paper is in closed access until 16th Jan 2019.
Sponsor: The authors thank the Australian Research Council discovery program (DP110101293) for funding support and S.H.M also thanks the University of South Australia for a postgraduate research scholarship.
Version: Accepted for publication
DOI: 10.1016/j.micromeso.2018.01.010
URI: https://dspace.lboro.ac.uk/2134/28228
Publisher Link: https://doi.org/10.1016/j.micromeso.2018.01.010
ISSN: 1387-1811
Appears in Collections:Closed Access (Chemistry)

Files associated with this item:

File Description SizeFormat
Accepted.pdfAccepted version305.74 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.