Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/28342

Title: A framework for design and optimization of tapered composite structures. Part II: Enhanced design framework with a global blending model
Authors: Jing, Zhao
Sun, Qin
Chen, Jian Q.
Silberschmidt, Vadim V.
Keywords: Tapered composite structures
Optimization
Global blending model
Stacking sequence
Buckling
Manufacturing constraints
Issue Date: 2017
Publisher: © Elsevier
Citation: JING, Z. ... et al, 2018. A framework for design and optimization of tapered composite structures. Part II: Enhanced design framework with a global blending model. Composite Structures, 188, pp.531-552.
Abstract: A high-dimensional variable design space in optimization problems for tapered composite structures presupposes a development of efficient computational techniques to improve the design efficiency and flexibility. In this work, a mathematical model for optimization of tapered composite structures with buckling and manufacturing constraints is developed, then a ply-drop-based global blending model (GBM) is suggested to address the layers' addition/deletion and blending problems. Within the framework proposed in Part I of this work (Compos Struct, 2016, 154: 106-128), by incorporating the global blending model, operations of add-layer, exchange-blend and sequence-adjustment are revised and enhanced. The GBM can not only characterize the global blending property, but also guide the maximum blending design. Accordingly, the design framework is simplified, and its computational cost is reduced significantly since there is no iteration of shape prediction and stacking-sequence optimization procedure. An 18-panel benchmark problem is adopted to verify the enhanced design framework, as compared with previous design results, the obtained better solution with higher efficiency implies its feasibility and potential for effective design of tapered composite structures.
Description: This paper is closed access until 22nd November 2018.
Sponsor: This work is supported by the National Natural Science Foundation of China (Nos. 11572134, 51375386) and China Postdoctoral Science Foundation funded project (No. 2017M612443).
Version: Accepted for publication
DOI: 10.1016/j.compstruct.2017.11.062
URI: https://dspace.lboro.ac.uk/2134/28342
Publisher Link: https://doi.org/10.1016/j.compstruct.2017.11.062
ISSN: 0263-8223
Appears in Collections:Closed Access (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
CS II for LUPIN.pdfAccepted version4.76 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.