Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/28428

Title: A conducting nano-filament (CNF) network as a precursor to the origin of superconductivity in electron-doped copper oxides
Authors: Yu, Heshan
He, G.
Lin, Ziquan
Kusmartseva, Anna F.
Yuan, J.
Zhu, Beiyi
Yang, Yi-Feng
Xiang, Tao
Li, Liang (Wuhan National High Magnetic Field Center)
Wang, Junfeng
Kusmartsev, F.V.
Jin, K.
Issue Date: 2018
Publisher: © the Authors. Published by the Nature Publishing Group
Citation: YU, H. ...et al., 2018. A conducting nano-filament (CNF) network as a precursor to the origin of superconductivity in electron-doped copper oxides. Nature Communications, In Press.
Abstract: Emergency of superconductivity at the instabilities of antiferromagnetism has been widely recognized in unconventional superconductors. In copper-oxide superconductors, spin fluctuations play a predominant role in electron pairing with electron dopants yet composite orders veil the nature of superconductivity for hole-doped family. However, in electron-doped copper oxide superconductors (cuprates) the AFM critical end point is still in controversy for different probes, demonstrating high sensitivity to oxygen content. Here, by carefully tuning the oxygen content, a systematic study of the Hall signal and magnetoresistivity up to 58 Tesla on LCCO thin films identifies two characteristic temperatures. The former is quite robust, whereas the latter becomes flexible with increasing magnetic field, thereby linking respectively to two- and three-dimensional AFM, evident from the multidimensional phase diagram as a function of oxygen and Ce dopants. A rigorous theoretical analysis of the presented data suggest the existence of conductive nano-filamentary structures that effectively corroborate all previously reported field studies. The new findings provide a uniquely consistent alternative picture in understanding the interactions between AFM and superconductivity in electron-doped cuprates and offer a consolidating interpretation to the pioneering scaling law in cuprates recently established by Bozovic et al. (Nature, 2016)
Description: This paper is in closed access until it is published.
Sponsor: This research was supported by the National Key Basic Research Program of China (2015CB921000), the National Natural Science Foundation of China Grant (11474338), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB07020100).
Version: Submitted for publication
URI: https://dspace.lboro.ac.uk/2134/28428
Publisher Link: https://www.nature.com/ncomms/
ISSN: 2041-1723
Appears in Collections:Closed Access (Physics)

Files associated with this item:

File Description SizeFormat
1610.04788v1.pdfSubmitted version1.4 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.