Loughborough University
Browse
Thesis-1996-Child.pdf (7.16 MB)

Long-term performance modelling of a combined energy generation system

Download (7.16 MB)
thesis
posted on 2018-03-27, 11:14 authored by D. Child
The installation of the combined energy generation system at West Beacon Farm, Loughborough, Leicestershire commenced in 1988, since when it has steadily grown in both generating capacity and operating complexity. It now consists of three electrical generating sources: two 25kW fixed speed horizontal axis wind turbines, a 6kWp photovoltaic array consisting of both monocrystalline and polycrystalline cells and a 15kW combined heat and power unit which also provides 38kW of thermal energy. Electricity is stored in a 184kWh lead acid battery, and also imported and exported from the grid. Previous research on the system was limited, due to lack of detailed system information and time. Therefore the aim of this research project has been to develop a more detailed and accurate computer model of the system that enables the present operating strategy to be evaluated, together with the effects on the system of changing this strategy. The outcome will be to optimize the generating cost and to provide a model with the flexibility to investigate the conditions in other hybrid systems. [Continues.]

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Publisher

© D. Child

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

1996

Notes

A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy at Loughborough University.

Language

  • en

Usage metrics

    Mechanical, Electrical and Manufacturing Engineering Theses

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC