Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/32438

Title: BIM search engine: Exploiting interrelations between objects when assessing relevance
Authors: Demian, Peter
Keywords: Building Information Modelling
Search engine
Information retrieval
Issue Date: 2018
Publisher: International Society for Computing in Civil and Building Engineering © The Author
Citation: DEMIAN, P., 2018. BIM search engine: Exploiting interrelations between objects when assessing relevance. Presented at the 17th International Conference on Computing in Civil and Building Engineering (ICCCBE2018), Tampere, Finland, 5-7 June 2018.
Abstract: An increasing amount of information is packed into Building Information Models (BIMs), with the 3D geometry intended to serve as a central index leading to other information. The Three-Dimensional Information Retrieval (3DIR) project investigated information retrieval from such environments, with the aim of developing a search engine for searching and retrieving information from a building model. Here, the 3D model of the building can be exploited to formulate queries, compute the relevance of information items to a given query, and visualize search results. The focus of this paper is the computing of relevance. Literature in BIM/CAD and information retrieval was reviewed as a precursor to developing the search engine. Based on earlier research which identified the needs and aspirations of the users of BIMs, a graph theoretic formulation is proposed here to inform the emerging retrieval mechanisms of a BIM search engine. This formulation distinguishes between 3D and textual information in the model (the vertices in the graph), and between different types of relationships linking model objects (the edges in the graph). The value is tested of exploiting a 3D object’s relations to other 3D objects when assessing that object’s relevance to a query. For example, if a user is searching for “glazing door internal wall”, such a holistic/contextual search would rate the relevance of a “glazing panel” object more highly if it was touching “internal wall” or “door” objects. This notion was tested using an Autodesk Revit model from an architectural industry partner, augmented with the 3DIR search toolset. The model contained just under 7k 3D elements. Relationships between the objects were either hosting, touching or intersecting relationships. A comparison of the retrieval performance for a handful of test queries with and without this holistic/contextual search function does not decisively highlight the benefit but demonstrates the promise of this approach particularly for more complex multiple search term queries, as well as the value of the underlying graph theoretic formulation for studying and developing such systems.
Description: This is a conference paper.
Version: Accepted for publication
URI: https://dspace.lboro.ac.uk/2134/32438
Publisher Link: http://www.isccbe.org/
Appears in Collections:Conference Papers and Presentations (Architecture, Building and Civil Engineering)

Files associated with this item:

File Description SizeFormat
ICCCBE2018 3DIRv11-submit.pdfAccepted version262.73 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.