Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/3316

Title: Vibration measurements using continuous scanning laser Doppler vibrometry : theoretical velocity sensitivity analysis with applications
Authors: Halkon, Ben J.
Rothberg, Steve
Keywords: Laser Doppler Vibrometry
Velocity sensitivity
Vibration measurement
Rotating machinery
Issue Date: 2003
Publisher: © Institute of Physics Publishing
Citation: HALKON, B.J. and ROTHBERG, S.J., 2003. Vibration measurements using continuous scanning laser Doppler vibrometry : theoretical velocity sensitivity analysis with applications. Measurement science and technology, 14, pp. 382–393
Abstract: It is readily accepted that a Laser Vibrometer measures target velocity in the direction of the incident laser beam but this measured velocity must be considered in terms of the various target velocity components. This paper begins with a review of the theoretical description of the velocity sensed by a single laser beam incident in an arbitrary direction on a rotating target undergoing arbitrary vibration. The measured velocity is presented as the sum of six terms, each the product of a combination of geometric parameters, relating to the laser beam orientation, and a combination of motion parameters – the “vibration sets”. This totally general velocity sensitivity model can be applied to any measurement configuration on any target. The model is also sufficiently versatile to incorporate time dependent beam orientation and this is described in this paper, with reference to continuous scanning Laser Doppler Vibrometry. For continuous scanning applications, the velocity sensitivity model is shown formulated in two useful ways. The first is in terms of the laser beam orientation angles, developing the original model to include time dependency in the angles, whilst the second is an entirely new development in which the model is written in terms of the mirror scan angles, since it is these which the operator would seek to control in practice. In the original derivation, the illuminated section of the rotating target was assumed to be of rigid cross-section but, since continuous scanning measurements are employed on targets with flexible cross-sections, such as beams, panels and thin or bladed discs, the theory is developed in this paper for the first time to include provision for such flexibility.
Description: This article was published in the journal, Measurement science and technology [© Institute of Physics Publishing]. The definitive version is available at: http://www.iop.org/EJ/journal/MST
URI: https://dspace.lboro.ac.uk/2134/3316
ISSN: 0957-0233
Appears in Collections:Published Articles (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.