Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/3326

Title: Seasonal evolution of meltwater generation, storage and discharge at a non-temperate glacier in Svalbard
Authors: Hodgkins, Richard
Keywords: Meltwater
Glacier hydrology
Time-series analysis
Surface energy balance
Water storage
Issue Date: 2001
Publisher: © John Wiley & Sons, Ltd.
Citation: HODGKINS, R., 2001. Seasonal evolution of meltwater generation, storage and discharge at a non-temperate glacier in Svalbard. Hydrological Processes, 15(3), pp. 441-460
Abstract: In glacierized catchments, meteorological inputs driving surface melting are translated into runoff outputs mediated by the glacier hydrological system: analysis of the relationship between meteorology and diurnal and seasonal patterns of runoff should reflect the functioning of that system, with the role of meltwater storage likely to be of particular importance. Daily meltwater storage is determined for a glacier at 78 °N in the Svalbard archipelago, by comparing inputs calculated from a surface energy balance model with measured outputs (proglacial discharge). Solar radiation, air temperature, wind speed and proglacial discharge are then analysed by regression and time-series methods, in order to assess the meteorology–discharge relationship and its variation at diurnal and seasonal time-scales. The recorded discharge time-series can be divided into two contrasting intervals: up to early August, proglacial discharge was high and variable, mean hydrographs showed little indication of diurnal cycling, ARIMA models of discharge indicated a non-seasonal, moving-average generating process, and there was a net loss of meltwater from storage; from early August, proglacial discharge was low and relatively invariable, but with clearer diurnal cycles, regression models of discharge showed substantially improved correlations with air temperature and solar radiation, ARIMA models indicated a non-seasonal, autoregressive generating process, and eventually a seasonal component, and there was a net gain in meltwater storage. The transition between the two periods is brief compared with the duration of the melt season. The runoff response to meteorology therefore lacks the strongly progressive element previously identified in mid-latitude glacierized catchments. In particular, the glacier hydrological system only appears responsive to diurnal forcing following the depletion of the seasonal snowpack meltwater store.
Description: This article is Restricted Access. It was published in the journal Hydrological Processes [© John Wiley & Sons, Ltd.] and is available at: http://www3.interscience.wiley.com/cgi-bin/issn?DESCRIPTOR=PRINTISSN&VALUE=0885-6087
URI: https://dspace.lboro.ac.uk/2134/3326
ISSN: 0885-6087
Appears in Collections:Closed Access (Geography and Environment)

Files associated with this item:

File Description SizeFormat
8-Hodgkins 2001.pdf408.81 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.