Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/33355

Title: Aerodrome situational awareness of unmanned aircraft: an integrated self-learning approach with Bayesian network semantic segmentation
Authors: Lu, Bowen
Coombes, Matthew
Li, Baibing
Chen, Wen-Hua
Issue Date: 2018
Publisher: Institution of Engineering and Technology (IET)
Citation: LU, B. ...et al., 2018. Aerodrome situational awareness of unmanned aircraft: an integrated self-learning approach with Bayesian network semantic segmentation. IET Intelligent Transport Systems, 12(8), pp. 868-874.
Abstract: It is expected that soon there will be a significant number of unmanned aerial vehicles (UAVs) operating side-by-side with manned civil aircraft in national airspace systems. To be able to integrate UAVs safely with civil traffic, a number of challenges must be overcome first. This paper investigates situational awareness of UAVs’ autonomous taxiing in an aerodrome environment. The research work is based on a real outdoor experimental data collected at the Walney Island Airport, the United Kingdom. It aims to further develop and test UAVs’ autonomous taxiing in a challenging outdoor environment. To address various practical issues arising from the outdoor aerodrome such as camera vibration, taxiway feature extraction and unknown obstacles, we develop an integrated approach that combines the Bayesian-network based semantic segmentation with a self-learning method to enhance situational awareness of UAVs. Detailed analysis for the outdoor experimental data shows that the integrated method developed in this paper improves robustness of situational awareness for autonomous taxiing.
Description: This is an Open Access Article. It is published by IET under the Creative Commons Attribution 3.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/3.0/
The data used in this research are openly available from the data archive at: https:// doi.org/10.17028/rd.lboro.6293513.v1.
Sponsor: This work was supported by the U.K. Engineering and Physical Science Research Council (EPSRC) Autonomous and Intelligent Systems programme under the grant number EP/J011525/1 with BAE Systems as the leading industrial partner
Version: Published
DOI: 10.1049/iet-its.2017.0101
URI: https://dspace.lboro.ac.uk/2134/33355
Publisher Link: http://dx.doi.org/10.1049/iet-its.2017.0101
Related Resource: https:// doi.org/10.17028/rd.lboro.6293513.v1
ISSN: 1751-956X
Appears in Collections:Published Articles (Business)
Published Articles (Aeronautical and Automotive Engineering)

Files associated with this item:

File Description SizeFormat
08462710.pdfPublished version3.96 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.