Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/3481

Title: Atmospheric plasma inactivation of biofilm-forming bacteria for food safety control
Authors: Vleugels, Mieke
Shama, Gilbert
Deng, X.T.
Greenacre, Elizabeth
Brocklehurst, Tim
Kong, Michael G.
Keywords: Atmospheric glow discharges
Food-borne microorganisms
Food surfaces
Issue Date: 2005
Publisher: © IEEE
Citation: VLEUGELA, M. ... et al, 2005. Atmospheric plasma inactivation of biofilm-forming bacteria for food safety control. IEEE Transactions on Plasma Science, 33(2), pp. 824-828
Abstract: The ability of atmospheric pressure glow discharges (APGD) to inactivate microorganisms has been demonstrated in a number of previous studies. However, most of this work has been performed using microorganisms that do not form biofilms and with the microorganisms supported on abiotic surfaces that discourage cell growth. When microorganisms attach to the surface of a food, they can extract nutrients from the food and proliferate at the surface. Often this growth takes the form of biofilms which comprise three-dimensional (3-D) networks of polysaccharides that attach microorganisms to surfaces and serve to protect them from external stresses; fresh foods, such as salad crops, frequently harbor biofilms. We believe that the use of APGD offers a potential for inactivating microorganisms on the surface of fresh foods that cannot be readily treated by other methods without inducing unacceptable changes to these foods. As a first step toward a full evaluation of the viability of the APGD technology for food safety control, we consider in this paper two key issues, namely: 1) whether atmospheric glow discharges can inactivate biofilm-forming microorganisms and 2) whether plasma treatment causes significant discoloration to food surfaces. Using the biofilm-forming bacterium Pantoea agglomerans and bell peppers (Capsicum annuum) as a typical example of plant tissue, we show that atmospheric He-O2 plasmas can be effective inactivation agents without causing unacceptable levels of discoloration to the peppers, and that furthermore they are superior to the use of low-pressure ultraviolet sources.
Description: This article was published in the journal IEEE Transactions on Plasma Science [© IEEE] and is also available at: http://ieeexplore.ieee.org/servlet/opac?punumber=27 Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
URI: https://dspace.lboro.ac.uk/2134/3481
ISSN: 0093-3813
Appears in Collections:Published Articles (Chemical Engineering)
Published Articles (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
01420625.pdf502.54 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.