Loughborough University
Browse
Thesis-2009-Junejo.pdf (68.35 MB)

X-ray based machine vision system for distal locking of intramedullary nails

Download (68.35 MB)
thesis
posted on 2018-11-14, 09:24 authored by Faraz Junejo
In surgical procedures for femoral shaft fracture treatment, current techniques for locking the distal end of intramedullary nails, using two screws, rely heavily on the use of two-dimensional X-ray images to guide three-dimensional bone drilling processes. Therefore, a large number of X-ray images are required, as the surgeon uses his/her skills and experience to locate the distal hole axes on the intramedullary nail. The long-term effects of X-ray radiation and their relation to different types of cancer still remain uncertain. Therefore, there is a need to develop a surgical technique that can limit the use of X-rays during the distal locking procedure. A Robotic-Assisted Orthopaedic Surgery System has been developed at Loughborough University named Loughborough Orthopaedic Assistant System (LOAS) to assist orthopaedic surgeons during distal-locking of intramedullary nails. It uses a calibration frame and a C-arm X-ray unit. The system simplifies the current approach as it uses only two near-orthogonal X-ray images to determine the drilling trajectory of the distal-locking holes, thereby considerably reducing irradiation to both the surgeon and patient. The LOAS differs from existing computer-assisted orthopaedic surgery systems, as it eliminates the need for optical tracking equipment which tends to clutter the operating theatre environment and requires care in maintaining the line of sight. Additionally use of optical tracking equipment makes such systems an expensive method for surgical guidance in distal-locking of intramedullary nails. This study is specifically concerned with the improvements of the existing system. [Continues.]

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Publisher

© Faraz Junejo

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2009

Notes

A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy at Loughborough University.

Language

  • en

Usage metrics

    Mechanical, Electrical and Manufacturing Engineering Theses

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC