Loughborough University
Browse
Thesis-2007-OHare.pdf (18.69 MB)

The formation of low-temperature superstructures in the two-dimensional Ising model with next-nearest neighbour interactions

Download (18.69 MB)
thesis
posted on 2018-11-16, 09:05 authored by Anthony O'Hare
For several decades the formation of different kinds of superstructures in solids has been a topical issue in condensed matter physics. The superstructures (or spatially modulated structures) may be of a different nature: magnetic patterns like spin-density waves, inhomogeneous charge distributions in charge-ordered compounds, dipolar and quadrupolar ordering in ferroelectrics or ferroelastics, regular lattice distortions and related orbital structures, stripe-like arrangements of dopants in alloys, etc. The phase diagrams of such compounds can be rather complicated involving a large number of phases with non-trivial types of ordering. Fortunately, all this wealth of seemingly unrelated phenomena can be often described by rather simple models with a due account taken of a competitive character of the most important interactions. In this thesis I will investigate the Ising model in 2-D with nearest and next-nearest neighbour interactions using several methods including exact diagonalisation of small clusters, transfer matrix technique and Monte Carlo simulation of large lattices. [Continues.]

History

School

  • Science

Department

  • Physics

Publisher

© Anthony O'Hare

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2007

Notes

A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy at Loughborough University.

Language

  • en

Usage metrics

    Physics Theses

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC