Loughborough University
Browse
RealTime2DPBM_ACSTemplate_updated_references.pdf (2.04 MB)

Aspect ratio distribution and chord length distribution driven modeling of crystallization of two-dimensional crystals for real-time model-based applications

Download (2.04 MB)
journal contribution
posted on 2018-11-20, 09:12 authored by Botond Szilagyi, Zoltan NagyZoltan Nagy
Two-dimensional (2D) crystals, for which the shape is described by two linear sizes, are common in fine chemical and pharmaceutical industries. Since the crystal size and shape are directly related to the performance of active pharmaceutical ingredients, the simultaneous size and shape distribution control is of paramount importance in pharmaceutical crystallization engineering. To efficiently achieve simultaneous size and shape control often requires model-based control strategies; however, the increased computational cost of the process simulation and the substantial differences between the simulated and measurable quantities make the implementation of model-based control approaches challenging. This paper addresses the important problem of the real-time simulation of the most likely measurable chord length distribution (CLD) and aspect ratio distribution (ARD) as well as the concentration variations during the crystallization of 2D needle-shaped crystals. This enables the application of focused beam reflectance measurement (FBRM) and particle vision and microscopy (PVM), two routinely applied probes, as quantitative direct feedback control tools. Artificial neural network (ANN)-based FBRM and PVM soft-sensors are developed, which enable the direct and fast transformation of 2D crystal size distribution (CSD) to CLD and ARD on arbitrary 2D grids. The training data for the ANN are generated by a first principle, geometrical model-based simulation of FBRM and PVM for high aspect ratio crystals, although the ANN approach is applicable for any simulated or experimental training data sets. It is also demonstrated that the in situ imaging-based shape measurement underestimates the real aspect ratio (AR) of crystals, for which a simple correction is proposed. From the model-equation solution perspective, the soft-sensors require full population balance solution. The 2D high-resolution finite volume method is applied to simulate the full 2D CSD, which is an accurate, stable, but computationally expensive technique. The real-time applicability is achieved through various implementation improvements including grid optimization and data-type optimized hybrid central processing unit-graphical processing unit calculations.

Funding

The financial support of the International Fine Particle Research Institution is acknowledged gratefully. Funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant No. [280106-CrySys] is also acknowledged.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Published in

Crystal Growth and Design

Volume

18

Issue

9

Pages

5311 - 5321

Citation

SZILAGYI, B. and NAGY, Z.K., 2018. Aspect ratio distribution and chord length distribution driven modeling of crystallization of two-dimensional crystals for real-time model-based applications. Crystal Growth and Design, 18 (9), pp.5311-5321.

Publisher

© American Chemical Society

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

2017-11-01

Publication date

2018

Notes

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Crystal Growth and Design, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.cgd.8b00758.

ISSN

1528-7483

eISSN

1528-7505

Language

  • en