Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/36360

Title: Morphology of depletant-induced erythrocyte aggregates
Authors: Nehring, Austin
Shendruk, Tyler N.
de Haan, Hendrick W.
Issue Date: 2018
Publisher: © Royal Society of Chemistry
Citation: NEHRING, A., SHENDRUK, T.N. and DE HAAN, H.W., 2018. Morphology of depletant-induced erythrocyte aggregates. Soft Matter, 14, pp. 8160-8171.
Abstract: Red blood cells suspended in quiescent plasma tend to aggregate into multicellular assemblages, including linearly stacked columnar rouleaux, which can reversibly form more complex clusters or branching networks. While these aggregates play an essential role in establishing hemorheological and pathological properties, the biophysics behind their self-assembly into dynamic mesoscopic structures remains under-explored. We employ coarse-grained molecular simulations to model low-hematocrit erythrocytes subject to short-range implicit depletion forces, and demonstrate not only that depletion interactions are sufficient to account for a sudden dispersion-aggregate transition, but also that the volume fraction of depletant macromolecules controls small aggregate morphology. We observe a sudden transition from a dispersion to a linear column rouleau, followed by a slow emergence of disorderly amorphous clusters of many short rouleaux at larger volume fractions. This work demonstrates how discocyte topology and short-range, non-specific, physical interactions are sufficient to self-assemble erythrocytes into various aggregate structures, with markedly different morphologies and biomedical consequences.
Description: This paper is in closed access until 18 Sep 2019.
Sponsor: HWdH gratefully acknowledges funding from the Natural Sciences and Engineering Research Council (NSERC) in the form of Discovery Grant 2014-06091.
Version: Accepted version
DOI: 10.1039/c8sm01026a
URI: https://dspace.lboro.ac.uk/2134/36360
Publisher Link: https://doi.org/10.1039/c8sm01026a
Appears in Collections:Closed Access (Maths)

Files associated with this item:

File Description SizeFormat
Shendruk_36360.pdfAccepted version2.96 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.