Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/3675

Title: Improved accuracy in quantitative fault tree anlysis.
Authors: Sinnamon, Roslyn M.
Andrews, J.D.
Keywords: Fault tree analyses
Binary decision diagram
Reliability risk
Issue Date: 1997
Publisher: © John Wiley & Sons
Citation: SINNAMIN, R.M. and ANDREWS, J.D., 1997. Improved accuracy in qualitative fault tree analysis. Quality and Reliability Engineering International, 13 (5), pp 285-292.
Abstract: The fault tree diagram defines the causes of the system failure mode or ‘top event’ in terms of the component failures and human errors, represented by basic events. By providing information which enables the basic event probability to be calculated, the fault tree can then be quantified to yield reliability parameters for the system. Fault tree quantification enables the probability of the top event to be calculated and in addition its failure rate and expected number of occurrences. Importance measures which signify the contribution each basic event makes to system failure can also be determined. Owing to the large number of failure combinations (minimal cut sets) which generally result from a fault tree study, it is not possible using conventional techniques to calculate these parameters exactly and approximations are required. The approximations usually rely on the basic events having a small likelihood of occurrence. When this condition is not met, it can result in large inaccuracies. These problems can be overcome by employing the binary decision diagram (BDD) approach. This method converts the fault tree diagram into a format which encodes Shannon’s decomposition and allows the exact failure probability to be determined in a very efficient calculation procedure. This paper describes how the BDD method can be employed in fault tree quantification.
Description: This article is Restricted Access. It was published in the journal, Quality and Reliability Engineering International [© John Wiley & Sons] and is also available at: http://www3.interscience.wiley.com/journal/3680/home
URI: https://dspace.lboro.ac.uk/2134/3675
ISSN: 0748-8017
Appears in Collections:Closed Access (Aeronautical and Automotive Engineering)

Files associated with this item:

File Description SizeFormat
97_QREI_QuanFT_RMSJDA.pdf441.8 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.