Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/36788

Title: General approach to quantum mechanics as a statistical theory
Authors: Rundle, Russell P.
Tilma, Todd
Samson, J.H.
Dwyer, Vincent M.
Bishop, R.F.
Everitt, Mark J.
Issue Date: 2019
Publisher: © American Physical Society (APS)
Citation: RUNDLE, R.P. ... et al, 2019. General approach to quantum mechanics as a statistical theory. Physical Review A, 99 (1), 012115.
Abstract: Since the very early days of quantum theory there have been numerous attempts to interpret quantum mechanics as a statistical theory. This is equivalent to describing quantum states and ensembles together with their dynamics entirely in terms of phase-space distributions. Finite dimensional systems have historically been an issue. In recent works [Phys. Rev. Lett. 117, 180401 (2016) and Phys. Rev. A 96, 022117 (2017)] we presented a framework for representing any quantum state as a complete continuous Wigner function. Here we extend this work to its partner function—the Weyl function. In doing so we complete the phase-space formulation of quantum mechanics—extending work by Wigner, Weyl, Moyal, and others to any quantum system. This work is structured in three parts. First we provide a brief modernized discussion of the general framework of phase-space quantum mechanics. We extend previous work and show how this leads to a framework that can describe any system in phase space—putting it for the first time on a truly equal footing to Schrödinger's and Heisenberg's formulation of quantum mechanics. Importantly, we do this in a way that respects the unifying principles of “parity” and “displacement” in a natural broadening of previously developed phase-space concepts and methods. Secondly we consider how this framework is realized for different quantum systems; in particular we consider the proper construction of Weyl functions for some example finite dimensional systems. Finally we relate the Wigner and Weyl distributions to statistical properties of any quantum system or set of systems.
Description: This paper was published in the journal Physical Review A and is also available at https://doi.org/10.1103/physreva.99.012115.
Sponsor: T.T. notes that this work was supported in part by JSPS KAKENHI (C) Grant No. JP17K05569. R.P.R. is funded by the EPSRC (Grant No. EP/N509516/1).
Version: Published
DOI: 10.1103/physreva.99.012115
URI: https://dspace.lboro.ac.uk/2134/36788
Publisher Link: https://doi.org/10.1103/physreva.99.012115
ISSN: 2469-9926
Appears in Collections:Published Articles (Physics)

Files associated with this item:

File Description SizeFormat
PhysRevA.99.012115.pdfPublished version911.87 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.