Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/37221

Title: A new integrated collision risk assessment methodology for autonomous vehicles
Authors: Katrakazas, Christos
Quddus, Mohammed A.
Chen, Wen-Hua
Issue Date: 2019
Publisher: © Elsevier
Citation: KATRAKAZAS, C., QUDDUS, M.A. and CHEN, W-H., 2019. A new integrated collision risk assessment methodology for autonomous vehicles. Accident Analysis & Prevention, 127, pp.61-79.
Abstract: Real-time risk assessment of autonomous driving at tactical and operational levels is extremely challenging since both contextual and circumferential factors should concurrently be considered. Recent methods have started to simultaneously treat the context of the traffic environment along with vehicle dynamics. In particular, interaction-aware motion models that take inter-vehicle dependencies into account by utilizing the Bayesian interference are employed to mutually control multiple factors. However, communications between vehicles are often assumed and the developed models are required many parameters to be tuned. Consequently, they are computationally very demanding. Even in the cases where these desiderata are fulfilled, current approaches cannot cope with a large volume of sequential data from organically changing traffic scenarios, especially in highly complex operational environments such as dense urban areas with heterogeneous road users. To overcome these limitations, this paper develops a new risk assessment methodology that integrates a network-level collision estimate with a vehicle-based risk estimate in real-time under the joint framework of interaction-aware motion models and Dynamic Bayesian Networks (DBN). Following the formulation and explanation of the required functions, machine learning classifiers were utilized for the real-time network-level collision prediction and the results were then incorporated into the integrated DBN model for predicting collision probabilities in real-time. Results indicated an enhancement of the interaction-aware model by up to 10%, when traffic conditions are deemed as collision-prone. Hence, it was concluded that a well-calibrated collision prediction classifier provides a crucial hint for better risk perception by autonomous vehicles.
Description: This paper is closed access until 2 March 2020.
Sponsor: This research was funded by a grant from the UK Engineering and Physical Sciences Research Council (EPSRC) (Grant reference: EP/J011525/1).
Version: Accepted for publication
DOI: 10.1016/j.aap.2019.01.029
URI: https://dspace.lboro.ac.uk/2134/37221
Publisher Link: https://doi.org/10.1016/j.aap.2019.01.029
ISSN: 0001-4575
Appears in Collections:Closed Access (Architecture, Building and Civil Engineering)

Files associated with this item:

File Description SizeFormat
Katkarazas_Quddus_WenHua2019.pdfAccepted version1.59 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.