Loughborough University
Browse
Pages from Jackson_9781351174664.pdf (3.72 MB)

The use of bond graph modelling in polymer electrolyte membrane fuel cell fault diagnosis

Download (3.72 MB)
conference contribution
posted on 2019-03-21, 11:37 authored by Andrey Vasilyev, John Andrews, Lei Mao, Lisa JacksonLisa Jackson
© 2018 Taylor & Francis Group, London. As a possible alternative energy source, hydrogen fuel cells, especially Polymer Electrolyte Membrane (PEM) fuel cells, have received much more attention in the last few decades, which have already been equipped in many applications. A series of studies have been devoted to PEM fuel cell fault diagnosis to ensure its reliability during its lifetime, but due to the complexity of PEM fuel cell systems and incomplete PEM fuel cell test protocols, it is difficult to test various PEM fuel cell failure modes, thus the performance of fault diagnostic techniques cannot be fully investigated. On this basis, it is necessary to develop a reliable PEM fuel cell model with capability of simulating various PEM fuel cell faults. In this study, a hybrid model is developed to represent the behavior of PEM fuel cells in both continuous and discrete-time domains. With a continuous-time domain sub-model, various aspects of PEM fuel cell behavior can be simulated, including fluid, thermal, and electro-chemical dynamics. Moreover, the PEM fuel cell failure modes are implemented with stochastic Petri nets in the discrete-time domain. Based on the developed hybrid model, various PEM fuel cell failure modes can be simulated and their effects on the system performance can be observed. With the simulated data under different conditions, the performance of fault diagnostic techniques can be better evaluated by studying their performance in different failure mode scenarios.

Funding

The work is supported by grant EP/K02101X/1 for Loughborough University from the UK Engineering and Physical Sciences Research Council (EPSRC).

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Published in

European Safety and Reliability Conference Safety and Reliability - Safe Societies in a Changing World - Proceedings of the 28th International European Safety and Reliability Conference, ESREL 2018

Pages

1545 - 1552

Citation

VASILYEV, A. ... et al., 2018. The use of bond graph modelling in polymer electrolyte membrane fuel cell fault diagnosis. IN: Haugen, S. ... et al. (eds). Safety and Reliability - Safe Societies in a Changing World - Proceedings of the 28th International European Safety and Reliability Conference (ESREL 2018), Trondheim, Norway, 17-21 June 2018, pp. 1545 - 1551.

Publisher

© Taylor and Francis

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

2018-05-10

Publication date

2018

Notes

This is an Open Access paper. It is published by Taylor & Francis under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND). Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

ISBN

9780815386827

Language

  • en

Location

Trondeim, Norway

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC