Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/37595

Title: Embroidered textile connectors for wearable systems
Authors: Fonseca, Duarte M. de Sousa
Keywords: Textile antenna
Textile connector
Textile transmission line
Issue Date: 2019
Publisher: © Duarte Manuel de Sousa Fonseca
Abstract: This thesis presents a novel textile microwave interconnect that can be easily attached and removed from textile devices. Interconnects perform a vital role in carrying RF signals between an amplifier and an antenna or other devices. Conventional interconnects used for interconnecting non-flexible circuits perform this function with very low losses, however the same is not true for transmission lines made on fabrics using conductive threads or inks. This scenario of using interconnects on fabric systems is challenging. Due to the necessity of washing fabrics, permanent attachments on the fabric have disadvantages. Theconnectionpresentedinthisthesisisdonewithoutanymetalor rigid parts on the textile devices side. The connector is held in place by magnets which are shown to have no negative impact on the microwave connection. Two models are then explored, a microstrip connector and a grounded coplanar waveguide (CPW) connector. A detailed study of the models was done and it was found that both models have reasonable results up to2GHz. The interconnects are fully characterized by de-embedding the connection part. This can be used to predict the effect the interconnect will have when used to connect a microwave equipment. The microstrip version of the interconnect is attached to an antenna and the results presented. The interconnect has no negative effect on the reflection coefficient measurement of the antenna. Repeatability tests were also performed with this model, with no visible change in the connection quality between measurements. Different embroidery patterns and stitching designs were also investigated. These are used to reduce the amount of conductive thread used up to 59% reduction in thread ammount. A wearable antenna was fully converted from rigid copper sheet to a full textile design.
Description: A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/37595
Appears in Collections:PhD Theses (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
Thesis-2019-DeSousaFonseca.pdf25.89 MBAdobe PDFView/Open
Form-2019-DeSousaFonseca.pdf1.19 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.