Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/3977

Title: Electrical conduction characteristics of solid metal anisotropic conductive adhesive particles
Authors: Dou, Guangbin
Whalley, David C.
Liu, Changqing
Issue Date: 2004
Publisher: © IEEE
Citation: DOU, G., WHALLEY, D.C. and LIU, C., 2004. Electrical conduction characteristics of solid metal anisotropic conductive adhesive particles. IN : 4th IEEE International Conference on Polymers and Adhesives in Microelectronics and Photonics, (POLYTRONIC 2004), 12-15 September, Portland USA, pp. 132-136.
Abstract: Anisotropic Conductive Adhesives (ACAs) have been used in fine pitch electronics packaging for over a decade and provide a high density and low temperature bonding method in a range of niche applications. In an ACA assembly, individual particles act as electrical conductors, providing current paths for fine pitch electronics interconnections. This paper presents a model of the electrical conduction characteristics of the solid metal particles used in some ACAs. Conduction through such ACA particles results from contact between the component and substrate pads and the particle, which is deformed by the assembly process. In order to investigate the effect of the extent of particle deformation, or transformation degree, upon the particle resistance, the particle transformation factor is defined. A mathematical model of the electrical resistance of an ACA particle, which is an integral function of the transformation factor and the particle geomehy, has been developed from a physical model of the ACA particle. MuthCAD software has been used to provide solutions for this function. According to these numerical solutions, the greater the particle transformation, the lower the particle resistance will be. In conclusion, it is shown that the ACA particle resistance is determined by the particle transformation and the particle geometries. Finally, the resistance function will explain the conductive mechanism of a deformed metal ACA particle.
Description: This is a conference paper and the definitive version is also available at: http://ieeexplore.ieee.org. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
URI: https://dspace.lboro.ac.uk/2134/3977
ISBN: 0780387449
Appears in Collections:Conference Papers and Presentations (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
RC63.pdf378.29 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.