Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/4117

Title: Rotary moulding of ceramic hollow wares
Authors: Al-Dawery, I.A.H.
Binner, J.G.P.
Tari, G.
Jackson, P.R.
Murphy, W.R.
Kearns, M.
Keywords: Rotational moulding
Gel-casting
Coagulation casting
Ceramics
Hollow ware
Issue Date: 2009
Publisher: © Elsevier
Citation: AL-DAWERY, I.A.H. ... et al, 2009. Rotary moulding of ceramic hollow wares. Journal of the European Ceramic Society, 29 (5), pp. 887–891
Abstract: A novel processing method for the fast and economic production of hollow ceramic components has been developed by combining in-situ coagulation moulding with a modified version of the technique of rotary moulding, the latter being adapted from the polymer industry. The process was found to require a high solids content suspension, hence development work was performed in this direction though in the end a new, commercial suspension was utilised. Of the three forming routes of gel casting, direct coagulation casting and in-situ coagulation moulding, the latter was found to be the most promising for the new process of rotary moulding of ceramics. Due to the low value of clay-based ceramics, a new low cost coagulant was identified and the effect of lactone concentration and temperature on setting time determined. Following substantial optimisation work, it was found that a two-speed approach to multi-axial rotation was the most successful; medium sized cream jugs could be produced in just 7 minutes. With respect to mould materials, the porous resin normally used for pressure casting of sanitary ware was found to be the best option, though since this is quite expensive conventional plaster-of-paris moulds were found to be a suitable material to enable companies, particularly SMEs, to become familiar with the technology whilst avoiding high costs for trials. The processed articles could be successfully fired and glazed using gas-fired kilns with no sign of any black cores. Major advantages of the process include the ability to precisely calculate the amount of ceramic slip required, eliminating either slip wastage or the need to pour used slip back into the virgin material as currently happens with slip casting. In addition, since the precursor suspension has a very high solids content, the time and energy required to dry the green product and associated moulds has been considerably reduced.
Description: This article was accepted for publication in the journal, Journal of the European Ceramic Society [© Elsevier] and the definitive version is available at: http://www.sciencedirect.com/science/journal/09552219
Version: Accepted for publication
DOI: 10.1016/j.jeurceramsoc.2008.07.021
URI: https://dspace.lboro.ac.uk/2134/4117
ISSN: 0955-2219
Appears in Collections:Published Articles (Materials)

Files associated with this item:

File Description SizeFormat
Rotary Moulding of Ceramic Hollow Wares _Shaping III paper_ - JECerS final clean.pdf155.8 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.