Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/4534

Title: Dynamic verification of a multi-body computational model of human head and neck for frontal, lateral, and rear impacts
Authors: van Lopik, D.W.
Acar, Memis
Keywords: Cervical spine
Head and neck
Multi-body computational model
Vertebrae
Ligament forces
Muscle forces
Issue Date: 2007
Publisher: © Professional Engineering Publishing
Citation: VAN LOPIK, D.W. and ACAR, M., 2007. Dynamic verification of a multi-body computational model of human head and neck for frontal, lateral, and rear impacts. Proceedings of the IMechE, Part K: Journal of Multi-body Dynamics, 221 (2), pp. 199-217
Abstract: A multi-body computational model of the human head and neck was previously shown to be in good agreement with experimental findings from actual human cervical spine specimens. The model segments were tested in three directions of loading showing main and coupled motions to be accurate and realistic. The model’s ability to predict the dynamic response of the head and neck, when subjected to acceleration pulses representing frontal, lateral, and rear-end impacts, is verified using experimental data derived from sled acceleration tests with human volunteers for 15 g frontal and 7 g lateral impacts and from isolated cervical spine specimen tests for rear-end impacts. Response corridors based on sled acceleration tests with human volunteers for frontal and lateral impacts are used to evaluate the model and investigate the effect of muscle activation on the head– neck motion. Firstly, the impacts are simulated with both passive and active muscle behaviour. Secondly, the local loads in the soft-tissue elements during the frontal impact are analysed. For rear-end impact simulation experiments using ligamentous isolated cervical spine specimens are used to evaluate the model performance before investigating the effects of muscle tensioning. Good agreement with human volunteer response corridors resulting from frontal and lateral impacts, and isolated cervical spine specimen sled test rear-end impact experiments is demonstrated for the model, highlighting the important role the muscles of the neck play in the head–neck response to acceleration impacts. The model is shown to be able to predict the loads and deformations of the cervical spine components making it suitable for injury analysis.
Description: This is an article from the journal, Proceedings of the IMechE, Part K: Journal of Multi-body Dynamics [© Professional Engineering Publishing ]. It is also available at: http://journals.pepublishing.com/content/119776/?p=266fefa3f73a46f381f6a697583ca356&pi=0
Version: Published
DOI: 10.1243/14644193JMBD89
URI: https://dspace.lboro.ac.uk/2134/4534
ISSN: 1464-4193
Appears in Collections:Published Articles (Mechanical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
Acar10.pdf1.7 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.