Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/4647

Title: Part shrinkage anomilies from stereolithography injection mould tooling
Authors: Harris, Russell A.
Newlyn, H.A.
Hague, Richard J.M.
Dickens, Phill M.
Keywords: Finite element analysis
Plastic injection moulding
Polymer shrinkage
Rapid tooling
Issue Date: 2003
Publisher: © Elsevier
Citation: HARRIS, R.A....et al., 2003. Part shrinkage anomilies from stereolithography injection mould tooling . International Journal of Machine Tools and Manufacture, 43(9), pp. 879-887.
Abstract: The use of stereolithography (SL) tooling allows plastic parts to be produced by injection moulding in a very short time due to the speed of mould production. One of the supposed advantages of the process is that it provides a low volume of parts that are the same as parts that would be produced by the conventional hard tooling in a fraction of the time and cost. However, this work demonstrates different rates of polymer shrinkage are developed by parts produced by SL and conventional tooling methods. These revelations may counter the greatest advantages of the SL injection moulding tooling process as the parts do not replicate those that would be produced by conventional hard tooling. This work identifies the different shrinkage that occurs in mouldings produced by an SL mould as compared to those produced from an aluminium mould. The experiments utilise two very different types of polymers and two mould geometries, which are 2 processed in the same manner so that the heat transfer characteristics of the moulds are isolated as the only experimental variable. The work demonstrates how the two mould materials exhibit very different rates of expansion due to the temperature profiles experienced during moulding. This expansion must be compensated for to establish the total amount of shrinkage incurred by moulded parts. The compensation is derived by a mathematical approach and by modelling using finite element analysis. Both techniques depend upon knowledge of the thermal conditions during moulding. Knowledge of these thermal conditions are obtained by real-time data acquisition and simulated by FEA modeling. The application of the findings provide knowledge of the complete shrinkage values relating to the mould material and polymer used which would enable the production of geometrically accurate parts.
Description: This article has been published in the journal, International Journal of Machine Tools and Manufacture [© Elsevier] and is available at: http://dx.doi.org/10.1016/S0890-6955(03)00080-4
Version: Published
DOI: 10.1016/S0890-6955(03)00080-4
URI: https://dspace.lboro.ac.uk/2134/4647
ISSN: 0890-6955
Appears in Collections:Published Articles (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
harris03.pdf719.32 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.