Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/4682

Title: Adhesion of precision welded lead-free electrical interconnects formed by molten droplet deposition
Authors: Webb, D.P.
Liu, C.
Sarvar, Farhad
Conway, Paul P.
Williams, K.
Keywords: Lead-free
High temperature electrical joint
Joint formation
Molten droplet impact
Precision joining
Joint adhesion
Issue Date: 2007
Publisher: Professional Engineering Publishing (© IMechE)
Citation: Webb, D.P. ... et al, 2007. Adhesion of precision welded lead-free electrical interconnects formed by molten droplet deposition. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221 (2), pp. 303-315
Abstract: An existing process, droplet welding, has been proposed for the production of precision, high-temperature, lead-free electrical joints. A modified metal inert gas (MIG) welding plasma is used to produce molten metal droplets, which then fall on a part to make an electrical joint. The subject of the present paper is an investigation of the factors affecting successful welded joint formation for a given droplet material and target, with the goal of providing the basis of a computer model to enable rapid process set-up on a production line. It is found that a parameter space can be identified for good adhesion of a droplet to a target, characterized by droplet temperature and target thickness, for each droplet material/target material combination. Essentially adhesion can be viewed as determined by competition between the delivery of thermal energy from the droplet to the target immediately underneath the droplet, and the removal of the energy from the interface region to the rest of the target, with no role played by the droplet kinetics after impact. It is therefore concluded that a relatively simple thermal model could be used by production-line engineers to identify the parameter space for rapid process set-up with new material combinations and products. The conclusion is supported by evidence from high-speed video images of droplet impact. Such a simple thermal model is proposed and is found to be capable of predicting adhesion between droplet and target. The results are discussed in the context of the extensive literature on molten droplet impact and solidification.
Description: This article was published in the Journal, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture [© Professional Engineering Publishing]. The definitive version is available at: http://journals.pepublishing.com/content/119784/?sortorder=asc
Version: Published
DOI: 10.1243/09544054JEM365
URI: https://dspace.lboro.ac.uk/2134/4682
ISSN: 0954-4054
Appears in Collections:Published Articles (Mechanical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
Adhesion of precision welded led-free....pdf904.31 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.