Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/5173

Title: Electron kinetic effects in atmospheric dielectric-barrier glow discharges
Authors: Zhu, X.M.
Kong, Michael G.
Issue Date: 2005
Publisher: © American Institute of Physics
Citation: ZHU, X.M. and KONG, M.G., 2005. Electron kinetic effects in atmospheric dielectric-barrier glow discharges. Journal of Applied Physics, 97 (8), article 083301, pp. 1-6.
Abstract: Large-volume atmospheric dielectric-barrier discharges (DBD) are particularly useful for processing applications when they operate in their homogeneous mode. A vast majority of their theoretical studies is currently based on the hydrodynamic treatment in which electrons are assumed to be in equilibrium with the local electric field. Recognizing that this assumption is incorrect in the sheath region, we report the development of an electron-hybrid model to treat electrons kinetically and all other particles hydrodynamically. Through numerical examples, it is shown that the mainstream hydrodynamic model underestimates gas ionization and discharge current. Using the hybrid model, it is demonstrated that variation in the amplitude of the applied voltage does not significantly alter sheath characteristics in terms of the electric field and the electron mean energy. Also gas ionization in atmospheric DBD is found to be significant only over a short timescale of 1 µs. Compared with dc atmospheric pressure glow discharges, atmospheric DBD are shown to have a smaller electron mean energy and a larger sheath thickness.
Description: Copyright 2005 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the authors and the American Institute of Physics. This article appeared in the Journal of Applied Physics and may be found at: http://link.aip.org/link/?JAPIAU/97/083301/1
Version: Published
DOI: 10.1063/1.1872192
URI: https://dspace.lboro.ac.uk/2134/5173
ISSN: 0021-8979
Appears in Collections:Published Articles (Electronic, Electrical and Systems Engineering)

Files associated with this item:

File Description SizeFormat
Zhu_Kong_2005_AJP.pdf137.63 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.