Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/5254

Title: Simulations of delamination in CFRP laminates: effect of microstructural randomness
Authors: Khokhar, Zahid R.
Ashcroft, Ian A.
Silberschmidt, Vadim V.
Keywords: CFRP laminates
Cohesive zone modelling
Microstructural randomness
Weibull’s distribution
Issue Date: 2009
Publisher: © Elsevier
Citation: KHOKHAR, Z.R., ASHCROFT, I.A. and SILBERSCHMIDT, V.V., 2009. Simulations of delamination in CFRP laminates: effect of microstructural randomness. Computational Materials Science, 46 (3), pp. 607-613.
Abstract: Due to their high specific strength and stiffness, fibre-reinforced composite materials are being increasingly used in structural applications where a high level of performance is important (e.g. aerospace, automotive, offshore structures, etc.). Performance in service of these composites is affected by multi-mechanism damage evolution under loading and environmental conditions. For instance, carbon fibre-reinforced laminates demonstrate a wide spectrum of failure mechanisms such as matrix cracking and delamination. These damage mechanisms can result in significant deterioration of the residual stiffness and load-bearing capacity of composite components and should be thoroughly investigated. The delamination failure mechanism is studied in this paper for a double cantilever beam (DCB) loaded in Mode I. Several sensitivity studies are performed to analyse the effects of mesh density and of parameters of the cohesive law on the character of damage propagation in laminates. The microstructural randomness of laminates that is responsible for non-uniform distributions of stresses in them even under uniform loading conditions is accounted for in the model. The random properties are introduced with the use of Weibull’s two-parameter probability density function. Several statistical realisations are carried out which show that the effect of microstructure could significantly affect the macroscopic response emphasizing the need to account for microstructural randomness for accurate predictions of load-carrying capacity of laminate composite structures.
Description: This is article was published in the journal, Computational Materials Science [© Elsevier] and the definitive version is available at: www.elsevier.com/locate/commatsci
Version: Accepted for publication
DOI: 10.1016/j.commatsci.2009.04.004
URI: https://dspace.lboro.ac.uk/2134/5254
ISSN: 0927-0256
Appears in Collections:Published Articles (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
CMS delamination IWCMM18-revised.pdf150.28 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.