Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/5481

Title: Multiplatform phased mission reliability modelling for mission planning
Authors: Prescott, Darren R.
Andrews, J.D.
Downes, C.G.
Keywords: Phased mission analysis
Reliability-based prognostics
Mission planning
Binary decision diagrams (BDDs)
Issue Date: 2009
Publisher: © Professional Engineering Publishing / IMechE
Citation: PRESCOTT, D.R., ANDREWS, J.D. and DOWNES, C.G., 2009. Multiplatform phased mission reliability modelling for mission planning. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 223(1), pp. 27-39.
Abstract: Autonomous systems are being increasingly used in many areas. A significant example is unmanned aerial vehicles (UAVs), regularly being called upon to perform tasks in the military theatre. Autonomous systems can work alone or be called upon to work collaboratively towards common mission objectives. In this case it will be necessary to ensure that the decisions enable the progression of the platform objectives and also the overall mission objectives. The motivation behind the work presented in this paper is the need to be able to predict the failure probability of missions performed by a number of autonomous systems working together. Such mission prognoses can assist the mission planning process in autonomous systems when conditions change, with reconfiguration taking place if the probability of mission failure becomes unacceptably high. In a multiplatform phased mission a number of platforms perform their own phased mission that contributes to an overall mission objective. Presented in this paper is a methodology for calculating the phase failure probabilities of a multiplatform phased mission. These probabilities are then used to find the total mission failure probability. Prior to the mission the failure probabilities are used to decide if the original mission structure is acceptable. Once underway, failure probabilities, updated as circumstances change, are used to decide whether a mission should continue. Circumstances can change owing to failures on a platform, changing environmental conditions (weather), or the occurrence of unforeseen external events (emerging threats). This diagnostics information should be used to ensure that the updated failure probabilities calculated take into account the most up-to-date system information possible. Since the speed of decision making and the accuracy of the information used are essential, binary decision diagrams (BDDs) are utilized to form the basis of a fast, accurate quantification process.
Description: This is an article from the journal, Proceedings of the IMechE, Part O: Journal of Risk and Reliability [© Professional Engineering Publishing ]. It is also available at: http://dx.doi.org/10.1243/1748006XJRR204
Version: Published
DOI: 10.1243/1748006XJRR204
URI: https://dspace.lboro.ac.uk/2134/5481
ISSN: 1748-006X
Appears in Collections:Published Articles (Aeronautical and Automotive Engineering)

Files associated with this item:

File Description SizeFormat
prescott2.pdf441.28 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.