Loughborough University
Browse
modelling the effects.pdf (317.89 kB)

Modelling the effects of combustion and turbulence on near-wall temperature gradients in the cylinders of spark ignition engines

Download (317.89 kB)
journal contribution
posted on 2009-12-21, 12:13 authored by R.J. Jenkin, E.H. James, Weeratunge MalalasekeraWeeratunge Malalasekera
An existing quasi-dimensional engine cycle model has been modified to enable accurate prediction of the near-wall temperature field in the burned and unburned gases. This has been achieved by dividing the cylinder into a number of discrete masses, each of which has a unique state. These discrete masses are assumed to remain stacked in layers adjacent to the cylinder walls in both the unburned gas and in the discrete segments generated during the sequential burning process. A k-ϵ turbulence model has been incorporated into the engine cycle simulation, providing information on the nature of the instantaneous in-cylinder turbulence for input to a fractal flame model to depict the flame propagation process. When this approach is applied to the prediction of the flame propagation rate, excellent comparison is afforded between simulated and measured pressure-crank angle diagrams. Further validation is provided by comparison of near-wall temperature predictions with measured ones and the essential features of the observed boundary layer behaviour are reproduced.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Citation

JENKIN, R.J., JAMES, E.H. and MALALASEKERA, W., 1998. Modelling the effects of combustion and turbulence on near-wall temperature gradients in the cylinders of spark ignition engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 212 (6), pp. 533-546

Publisher

Professional Engineering Publishing / © IMechE

Version

  • VoR (Version of Record)

Publication date

1998

Notes

This is an article from the journal, Proceedings of the IMechE, Part D: Journal of Automobile Engineering [© IMechE ]. It is also available at: http://dx.doi.org/10.1243/0954407981526163

ISSN

0954-4070

Language

  • en