Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/5739

Title: Analysis, simulation and control of chaotic behaviour and power electronic converters
Authors: Natsheh, Ammar Nimer
Keywords: DC-DC boost converters
AC-DC PFC boost converter
Bifurcation and Chaos theory
Delayed continuous current feedback controller
Issue Date: 2008
Publisher: © A.N. Natsheh 2008
Abstract: The thesis describes theoretical and experimental studies on the chaotic behaviour of a peak current-mode controlled boost converter, a parallel two-module peak current-mode controlled DC-DC boost converter, and a peak current-mode controlled power factor correction (PFC) boost converter. The research concentrates on converters which do not have voltage control loops, since the main interest is in the intrinsic mechanism of chaotic behaviour. These converters produce sub-harmonics of the clock frequency at certain values of the reference current I[ref] and input voltage V[in], and may behave in a chaotic manner, whereby the frequency spectrum of the inductor becomes continuous. Non-linear maps for each of the converters are derived using discrete time modelling and numerical iteration of the maps produce bifurcation diagrams which indicate the presence of subharmonics and chaotic operation. In order to check the validity of the analysis, MATLAB/SIMULINK models for the converters are developed. A comparison is made between waveforms obtained from experimental converters, with those produced by the MATLAB/SIMULINK models of the converters. The experimental and theoretical results are also compared with the bifurcation points predicted by the bifurcation diagrams. The simulated waveforms show excellent agreement, with both the experimental waveforms and the transitions predicted by the bifurcation diagrams. The thesis presents the first application of a delayed feedback control scheme for eliminating chaotic behaviour in both the DC-DC boost converter and the PFC boost converter. Experimental results and FORTRAN simulations show the effectiveness and robustness of the scheme. FORTRAN simulations are found to be in close agreement with experimental results and the bifurcation diagrams. A theoretical comparison is made between the above converters controlled using delayed feedback control and the popular slope compensation method. It is shown that delayed feedback control is a simpler scheme and has a better performance than that for slope compensation.
Description: A doctoral thesis submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/5739
Appears in Collections:PhD Theses (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File Description SizeFormat
Ammar Natsheh Thesis.pdf8.82 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.