Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/5825

Title: Determining effective subject-specific strength levels for forward dives using computer simulations of recorded performances
Authors: King, Mark A.
Kong, Pui W.
Yeadon, Maurice R.
Issue Date: 2009
Publisher: © Elsevier
Citation: KING, M.A., KONG, P.W. and YEADON, M.R., 2009. Determining effective subject-specific strength levels for forward dives using computer simulations of recorded performances. Journal of Biomechanics, 42 (16), pp. 2672-2677.
Abstract: This study used optimisation procedures in conjunction with an 8-segment torque-driven computer simulation model of the takeoff phase in springboard diving to determine appropriate subjectspecific strength parameters for use in the simulation of forward dives. Kinematic data were obtained using high-speed video recordings of performances of a forward dive pike (101B) and a forward 2½ somersault pike dive (105B) by an elite diver. Nine parameters for each torque generator were taken from dynamometer measurements on an elite gymnast. The isometric torque parameter for each torque generator was then varied together with torque activation timings until the root mean squared (RMS) percentage difference between simulation and performance in terms of joint angles, orientation, linear momentum, angular momentum, and duration of springboard contact was minimised for each of the two dives. The two sets of isometric torque parameters were combined into a single set by choosing the larger value from the two sets for each parameter. Simulations using the combined set of isometric torque parameters matched the two performances closely with RMS percentage differences of 2.6% for 101B and 3.7% for 105B. Maximising the height reached by the mass centre during the flight phase for 101B using the combined set of isometric parameters and by varying torque generator activation timings during takeoff resulted in a credible height increase of 38 mm compared to the matching simulation. It is concluded that the procedure is able to determine appropriate effective strength levels suitable for use in the optimisation of simulated forward dive performances.
Description: This article was accepted for publication in the Journal of Biomechanics [© Elsevier] and the definitive version is available at: www.elsevier.com/locate/jbiomech
Version: Accepted for publication
DOI: 10.1016/j.jbiomech.2009.08.007
URI: https://dspace.lboro.ac.uk/2134/5825
ISSN: 0021-9290
Appears in Collections:Published Articles (Sport, Exercise and Health Sciences)

Files associated with this item:

File Description SizeFormat
king2009.pdf277.09 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.