Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/6103

Title: Simulation and characterisation of electroplated micro-copper columns for electronic interconnection
Authors: Liu, Jun
Keywords: Electrodeposition
Electroplating
Kinetic Monte Carlo simulation
Copper column
Electrocrystallization
Nucleation
Growth history
Self-annealing
Issue Date: 2010
Publisher: © Jun Liu
Abstract: Growth mechanism of electroplated copper columns has been systematically studied by simulations and characterizations. A two-dimensional cross-sectional kinetic Monte Carlo (2DCS-KMC) model has been developed to simulate the electrodeposition of single crystal copper. The evolution of the microstructure has been visualized. The cluster density, average cluster size, variance of the cluster size and average aspect ratio were obtained from the simulations. The growth history of the deposition from the first atom to an equivalent of 100 monolayers was reconstructed. Following the single-lattice 2DCS-KMC model for a single crystal, a two-dimensional cross-sectional poly-lattice kinetic Monte Carlo (2DCSP-KMC) model has been developed for simulation of the electrodeposition of polycrystalline copper on both a copper and a gold substrate. With this model, the early-stage nucleation and the grain growth after impingement of nuclei can be simulated; as such the entire growth history is reconstructed in terms of the evolution of microstructure, grain statistics and grain boundary misorientation. The model is capable of capturing some key aspects of nucleation and growth mechanisms including the nucleation type (e.g. homogeneous or heterogeneous), texture development, the growth of grains and higher energetic state of grain boundaries. The model has also proven capable of capturing the effects of deposition parameters including applied electrode potential, concentration of cupric ions and temperature. Their effects are largely dependent on the substrates. The early-stage electrocrystallization of Cu on polycrystalline Au has been studied by ex-situ AFM observations. The evolution of surface morphology of the electrodeposited copper on a sputtered Au seed layer from 16ms to 1000s was observed and their formation mechanism discussed. The heterogeneous nucleation phenomenon, the competitive growth both longitudinally and laterally, and the dominant growth of some nuclei were experimentally observed, which are also visualized by the relevant KMC simulation results at a smaller size scale and a shorter time scale. A heuristic model is therefore proposed to describe the mechanism of the early-stage electrocrystallization of Cu on a polycrystalline Au seed layer. Electroplated copper columns plated for different times have been characterized in terms of the evolution of their external morphology, cross-sectional microstructure and crystal structure. The microstructure of electroplated copper columns is characteristic of bi-modal or tri-modal grain size distribution. The results indicate that recrystallization has occurred during or after the plating, top-down and laterally. Slight changes of the crystal structure were observed by in-situ XRD and it was found that the changes of the (111) and (200) planes occurred at different stages of self-annealing. Finally, the results indicate the presence of organic additives is not essential for self-annealing of a copper column to occur.
Description: A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/6103
Appears in Collections:PhD Theses (Mechanical, Electrical and Manufacturing Engineering)

Files associated with this item:

File SizeFormat
PhD thesis_ J Liu.pdf29.56 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.