Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/6113

Title: Coupled and uncoupled CFD prediction of the characteristics of jets from combustor air admission ports
Authors: McGuirk, James J.
Spencer, Adrian
Issue Date: 2001
Publisher: © ASME
Citation: MCGUIRK, J.J. and SPENCER, A., 2001. Coupled and uncoupled CFD prediction of the characteristics of jets from combustor air admission ports. Journal of Engineering for Gas Turbines and Power, 123 (2), pp. 327-332
Abstract: The paper focusses attention on alternative approaches for treating the coupling between the flow in the annulus supply ducts and the jets which enter combustor primary and dilution zones through air admission ports. Traditionally CFD predictions of combustor flows have modeled this in a very weakly coupled manner, with the port flow conditions being derived from 1D empirical correlations and used as boundary conditions for an internal-flow-only combustor CFD prediction. Recent work by the authors and others has introduced the viewpoint that fully coupled external-annulus–internal-combustor predictions is the way forward. Experimental data is gathered in the present work to quantify the strength of the interaction between annulus and core flows, which ultimately determines the jet characteristics at port exit. These data are then used to illustrate the improvement in the prediction of port exit jet characteristics which is obtained by adopting fully coupled calculations compared to the internal-flow-only approach. As a final demonstration of the importance of a fully coupled approach, isothermal calculations are presented for a single sector generic annular combustor. These show that quite different primary zone flow patterns are obtained from the two approaches, leading to considerable differences in the overall mixing pattern at combustor exit.
Description: This item is closed access. It is an article from the serial, Journal of Engineering for Gas Turbines and Power [© ASME ]. For more information on how to obtain this article please visit the ASME Digital Library, http://www.asmedl.org/ .
Version: Closed access
DOI: 10.1115/1.1362319
URI: https://dspace.lboro.ac.uk/2134/6113
ISSN: 0742-4795
Appears in Collections:Closed Access (Aeronautical and Automotive Engineering)

Files associated with this item:

File Description SizeFormat
CFD prediction.pdf900.69 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.