Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/6115

Title: Unsteady flow structures in radial swirler fed fuel injectors
Authors: Midgley, Kris
Spencer, Adrian
McGuirk, James J.
Issue Date: 2005
Publisher: © ASME
Citation: MIDGLEY, K., SPENCER, A. and MCGUIRK, J.J., 2005. Unsteady flow structures in radial swirler fed fuel injectors. Journal of Engineering for Gas Turbines and Power, 127 (4), pp. 755-764
Abstract: Many fuel injector geometries proposed for lean-premixed combustion systems involve the use of radial swirlers. At the high swirl numbers needed for flame stabilization, several complex unsteady fluid mechanical phenomena such as vortex breakdown and recirculation zone precession are possible. If these unsteady aerodynamic features are strongly periodic, unwanted combustion induced oscillation may result. The present paper reports on an isothermal experimental study of a radial swirler fed fuel injector originally designed by Turbomeca, and examines the dynamical behavior of the unsteady aerodynamic flow structures observed. Particle Image Velocimetry (PIV) is used to capture the instantaneous appearance of vortex structures both internal to the fuel injector, and externally in the main flame-stabilizing recirculation zone. Multiple vortex structures are observed. Vector field analysis is used to identify specific flow structures and perform both standard and conditional time averaging to reveal the modal characteristics of the structures. This allows analysis of the origin of high turbulence regions in the flow and links between internal fuel injector vortex breakdown and external unsteady flow behavior. The data provide a challenging test case for Large Eddy Simulation methods being developed for combustion system simulation.
Description: This item is closed access. It is an article from the serial, Journal of Engineering for Gas Turbines and Power [© ASME ]. For more information on how to obtain this article please visit the ASME Digital Library, http://www.asmedl.org/ .
Version: Closed access
DOI: 10.1115/1.1925638
URI: https://dspace.lboro.ac.uk/2134/6115
ISSN: 0742-4795
Appears in Collections:Closed Access (Aeronautical and Automotive Engineering)

Files associated with this item:

File Description SizeFormat
Unsteady flow structures.pdf1.64 MBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.