Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/6335

Title: Mathematical modelling of shallow water flows with application to Moreton Bay, Brisbane
Authors: Bailey, Clare L.
Keywords: Shallow water equations
Pollutant transport
Unstructured triangular mesh
Moreton Bay
Issue Date: 2010
Publisher: © Clare Louise Bailey
Abstract: A finite volume, shock-capturing scheme is used to solve the shallow water equations on unstructured triangular meshes. The conditions are characterised by: slow flow velocities (up to 1m/s), long time scale (around 10 days), and large domains (50-100km across). Systematic verification is carried out by comparing numerical with analytical results, and by comparing parameter variation in the numerical scheme with perturbation analysis, and good agreement is found. It is the first time a shock-capturing scheme has been applied to slow flows in Moreton Bay. The scheme is used to simulate transport of a pollutant in Moreton Bay, to the east of the city of Brisbane, Australia. Tidal effects are simulated using a sinusoidal time-dependent boundary condition. An advection equation is solved to model the path of a contaminant that is released in the bay, and the effect of tide and wind on the contaminant is studied. Calibration is done by comparing numerical results with measurements made at a study site in Moreton Bay. It is found that variation in the wind speed and bed friction coefficients changes the solution in the way predicted by the asymptotics. These results vary according to the shape of the bathymetry of the domain: in shallower areas, flow is more subject to shear and hence changes in wind speed or bed friction had a greater effect in adding energy to the system. The results also show that the time-dependent boundary condition reproduces the tidal effects that are found on the Queensland coast, i.e. semi-diurnal with amplitude of about 1 metre, to a reasonable degree. It is also found that the simulated path of a pollutant agrees with field measurements. The computer model means different wind speeds and directions can be tested which allows management decisions to be made about which conditions have the least damaging effect on the area.
Description: A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/6335
Appears in Collections:PhD Theses (Architecture, Building and Civil Engineering)

Files associated with this item:

File Description SizeFormat
CD Bailey PhD.zip1.19 MBZIPView/Open
Thesis-2010-Bailey.pdf12.02 MBAdobe PDFView/Open
Form-2010-Bailey.pdf796.44 kBAdobe PDFView/Open


SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.