Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/6825

Title: Flow structures in a compound meandering channel with flat and natural bedforms
Authors: Spooner, Jake
Keywords: Flooding
Experiments
Laser Doppler anemometer
Meandering channel
Velocity
Turbulence
Stage-discharge
Sediment
Flat bed
Natural
Mineralogy
Geology
Sedimentology
Issue Date: 2001
Publisher: © Jake Spooner
Abstract: Detailed experiments were conducted on a meandering compound channel, with a sinuosity of 1.384, in a 13m long 2.4m wide flume. Two cases were examined, where the main channel contained flat and natural bedforms. Measurements recorded include stage-discharge, sediment transport and bed shear stress. A three-component Laser Doppler Anemometer measured the velocity and turbulence in the flow and the bedform was measured using Digital Photogrammetry. It was found from the stage-discharge data that at most depths the effect of the bedforms is to reduce the discharge capacity of the channel. The maximum reduction in the discharge capacity was at the bankfull flow depth where the discharge was reduced by thirty percent. The sediment transport rate was found to decrease at relative overbank flow depths of 0.2-0.3. The velocity and turbulence measurements were used to examine the flow structure. It was found that the formation of bedforms in the main channel significantly affects the flow structure of the flow in the main channel, although the flow on the floodplain is similar. Significant secondary flow circulations were found in the natural bed case, particularly at higher flow depths. The secondary circulations are caused by centrifugal force, flow entering the main channel from the floodplain and reverse flows as the flow passes over ridges in the natural bed case. A new method for predicting velocity and discharge in meandering channels has been introduced based on the two-dimensional curvilinear equations for strearnwise motion. The turbulence terms were found to be insignificant and the method was applied to data sets at different scales.
Description: A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/6825
Appears in Collections:PhD Theses (Civil and Building Engineering)

Files associated with this item:

File SizeFormat
15016.pdf10.75 MBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.