Loughborough University
Leicestershire, UK
LE11 3TU
+44 (0)1509 263171
Loughborough University

Loughborough University Institutional Repository

Please use this identifier to cite or link to this item: https://dspace.lboro.ac.uk/2134/6883

Title: Gas turbine combustor port flows
Authors: Spencer, A.
Keywords: Jet engines
Combustor performance
Gas turbines
Issue Date: 1998
Publisher: © A. Spencer
Abstract: Competitive pressure and stringent emissions legislation have placed an urgent demand on research to improve our understanding of the gas turbine combustor flow field. Flow through the air admission ports of a combustor plays an essential role in determining the internal flow patterns on which many features of combustor performance depend. This thesis explains how a combination of experimental and computational research has helped improve our understanding, and ability to predict, the flow characteristics of jets entering a combustor. The experiments focused on a simplified generic geometry of a combustor port system. Two concentric tubes, with ports introduced into the inner tube's wall, allowed a set of radially impinging jets to be formed within the inner tube. By investigating the flow with LDA instrumentation and flow visualisation methods a quantitative and qualitative picture of the mean and turbulent flow fields has been constructed. Data were collected from the annulus, port and core regions. These data provide suitable validation information for computational models, allow improved understanding of the detailed flow physics and provide the global performance parameters used traditionally by combustor designers. Computational work focused on improving the port representation within CFD models. This work looked at the effect of increasing the grid refinement, and improving the geometrical representation of the port. The desire to model realistic port features led to the development of a stand-alone port modelling module. Comparing calculations of plain-circular ports to those for more realistic chuted port geometry, for example, showed that isothermal modelling methods were able to predict the expected changes to the global parameters measured. Moreover, these effects are seen to have significant consequences on the predicted combustor core flow field.
Description: A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.
URI: https://dspace.lboro.ac.uk/2134/6883
Appears in Collections:PhD Theses (Aeronautical and Automotive Engineering)

Files associated with this item:

File Description SizeFormat
DX202753.pdf81.43 MBAdobe PDFView/Open
Form-1998-Spencer.pdf40.82 kBAdobe PDFView/Open

 

SFX Query

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.