Loughborough University
Browse
283150.pdf (15.84 MB)

Three dimensional simulation of cloth drape

Download (15.84 MB)
thesis
posted on 2010-11-02, 09:52 authored by Anne Bricis
Research has been carried out in the study of cloth modelling over many decades. The more recent arrival of computers however has meant that the necessary complex calculations can be performed quicker and that visual display of the results is more realistic than for the earlier models. Today's textile and garment designers are happy to use the latest two dimensional design and display technology to create designs and experiment with patterns and colours. The computer is seen as an additional tool that performs some of the more tedious jobs such as re-drawing, re-colouring and pattern sizing. Designers have the ability and experience to visualise their ideas without the need for photo reality. However the real garment must be created when promoting these ideas to potential customers. Three dimensional computer visualisation of a garment can remove the need to create the garment until after the customer has placed an order. As well as reducing costs in the fashion industry, realistic three dimensional cloth animation has benefits for the computer games and film industries. This thesis describes the development of a realistic cloth drape model. The system uses the Finite Element Method for the draping equations and graphics routines to enhance the visual display. During the research the problem of collision detection and response involving dynamic models has been tackled and a unique collision detection method has been developed. This method has proved very accurate in the simulation of cloth drape over a body model and is also described in the thesis. Three dimensional design and display are seen as the next logical steps to current two dimensional practices in the textiles industry. This thesis outlines current and previous cloth modelling studies carried out by other research groups. It goes on to provide a full description of the drape method that has been developed during this research period.

History

School

  • Science

Department

  • Computer Science

Publisher

© Anne Bricis

Publication date

1995

Notes

A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University.

EThOS Persistent ID

uk.bl.ethos.283150

Language

  • en